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Abstract
This paper presents a systematic modeling methodology for microfluidic
concentration gradient generators. The generator is decomposed into a
system of microfluidic elements with relatively simple geometries.
Parameterized models for such elements are analytically developed and hold
for general sample concentration profiles and arbitrary flow ratios at the
element inlet; hence, they are valid for concentration gradient generators
that rely on either complete or partial mixing. The element models are then
linked through an appropriate set of parameters embedded at the element
interfaces. This yields a systematic, lumped-parameter representation of the
entire generator in terms of a network of gradient-generation elements. The
system model is verified by numerical analysis and experimental data and
accurately captures the overall effects of network topologies, element sizes,
flow rates and reservoir sample concentrations on the generation of sample
concentration gradient. Finally, this modeling methodology is applied to
propose a novel and compact microfluidic device that is able to create
concentration gradients of complex shapes by juxtaposing simple
constituent profiles along the channel width.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Concentration gradients and concentration arrays of diffusible
samples play important roles in the study of cell biology (e.g.,
chemotaxis [1, 2]), biochemistry [3, 4], surface patterning
and microfabrication [5, 6]. Conventionally, the Boyden
chamber [7], pipette [8], gel [9] or their derivatives [10, 11]
are mainly used to release the sample and investigate cell
behavior subjected to the concentration gradient. However,
these techniques are not effective in generating spatially stable
gradients of complex shapes due to the unbalanced sample
flux into and from the region of interest [12]. Therefore,
a technique to generate and maintain predictable complex
gradients of the sample concentration over a long period of
time that can be employed to examine the correlation between
sample gradients and cell response [12] is strongly desired.
In addition, development of sample concentration arrays also

enables the high-throughout assays (e.g., immunoassay and
enzyme assay) and efficient multi-dimensional screens for
combinational chemistry [3, 4, 13].

Recently, laminar diffusion-based microfluidic networks
have been extensively studied for the concentration-
related analysis since they allow accurate and reproducible
manipulation of the locations and quantities of samples
released into the system [12]. In general, these devices can be
classified into two categories: complete mixing- and partial
mixing-based. Complete mixing devices generally involve
serially recombining, mixing and splitting the sample solution
and buffer (or sample with different concentration). Sample
mixing before each splitting needs to be effectively complete
(uniform concentration along the channel width) to allow
use of models that represent channels and sample flow rates
as resistors and electrical currents in an electrical analogy.
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Jacobson et al [14] proposed a serial mixing network driven
by electrokinetic flow to achieve a continuously diluted sample
concentration array. This approach later was used in pressure
driven flow [3] to perform high-throughput fluorescent
immunoassays and quantitatively analyze multiple antibodies
in parallel. Dertinger et al [12] and Jeon et al [15] proposed
a tree-like microfluidic network to generate concentration
gradients of complex shapes (e.g., linear, parabolic and
periodic) along the channel width. Sample solutions with
different concentrations were supplied at multiple inlets, then
mixed, split and recombined in branch channels, which
eventually converged to the main channel to yield a transverse
complex profile (i.e., across the channel width). This device
was later improved by Lin et al [16], who integrated a
simple ‘mixer module’ with the gradient generating network to
enable on-chip dilution of initial samples and obtain
dynamically controlled temporal and spatial gradients. More
recently, Walker et al [17] have studied the effects of flow
and diffusion on chemotaxis in such devices using a simplified
numerical model as well as experiments. Nevertheless, to
ensure the transversely complete sample mixing before each
splitting, such gradient generators [12, 15–17] often use either
bulky network configurations that are prone to leakage and
clogging, or chaotic advective mixers [5] that are laborious in
layout and fabrication. Additionally, profiles produced at the
output channel are also discontinuous.

Concentration gradient or array generators fully relying
on diffusion-based partial mixing are simple in design and
fabrication. Holden et al [13] reported a Y-shape laminar
microfluidic diffusion diluter (mDD) that took advantage of
lateral mixing of different samples to generate transverse
concentration gradients. An analytical model was also
developed to accurately predict the output profiles. Walker
et al [18] designed a cross-mixing microfluidic device that
created a transverse bell-shaped concentration profile of a virus
to study the cell infection within a microscale environment.
Biddiss et al [19] presented a method to generate linear
and bell-shaped concentration gradients in electrokinetic flow,
which can be varied by adjusting the applied voltage and charge
heterogeneity of the channel surface. While these devices are
effective in generating relatively simple (e.g., approximately
linear or bell shape) concentration gradients, they have not
been adequately studied for generating complex (such as saw-
tooth or bell-shape in [2, 12]) profiles. This is, perhaps,
primarily caused by a lack of efficient and accurate models
to accurately analyze the variation of sample concentration
profiles in the network.

To address this issue, this paper proposes a systematic
modeling approach for efficient design of both complete and
partial mixing-based concentration gradient generators. In our
approach, a complex generator is geometrically decomposed
into a set of simple elements. Analytical models for individual
elements are derived to accurately capture the dependence of
fluid and sample transport on device topologies, element sizes,
material properties and initial reservoir sample concentrations.
Proper parameters are embedded at input and output terminals
(i.e., inlets and outlets) of these element models to pass fluidic
and concentration information between adjacent elements. As
a result, the network of gradient generators can be represented
as a system model by linking the individual elements [20].

The modeling results are validated using experimental data
extracted from the literature [17] as well as full numerical
analysis. To demonstrate its utility, this approach is used
to propose a novel and compact microfluidic device that is
capable of generating transverse complex (e.g., saw-tooth-
shaped, multiple-bell-shaped) concentration profiles.

Compared to previous studies, our effort exhibits three
significant novelties. First, in contrast to the previous
work focusing on electrokinetic flow [20, 21], this paper
extends the element models to accommodate pressure-driven
flow. Second, while resistor-based models [12, 14], which
exploit the analogy between electric circuitry and fluid-
sample transport, impose the complete mixing constraint on
device design, our approach allows concentration profiles
(rather than a single average concentration value) to propagate
within the entire network. Therefore, it not only yields
all information attainable by resistor-based models, but also
captures spatial variations of the sample gradient generation
as well as its dependence on design parameters [13, 17].
Third, we juxtapose simple constituent profiles resulting from
partial mixing [13, 18] to construct complex gradients. This
obviates complicated device features normally required by
complete mixing, such as long zig-zag mixing channels,
chaotic advective mixers and bulky network structures
[5, 12, 15]. Therefore, our design affords simple layout and
fabrication, improved reliability, and enhanced performance
(e.g., smooth concentration profiles).

The paper is organized as follows. The systematic
modeling approach is first briefly introduced in section 2,
which is followed by analytical modeling of fluidic and sample
transport in individual elements, model validity, and system
integration (section 3). The system model is then validated
using experimental data and numerical analysis (section 4).
In section 5, the model is applied to propose a novel partial
mixing-based generator and is verified by numerical analysis.

2. Systematic representation of gradient generators

Our systematic approach can be illustrated with a tree-like
gradient generator that consists of reservoirs, channels, and
junctions (figure 1(a)) and produces linear concentration
profiles [2, 17]. The sample and buffer are released from
their individual reservoirs, mixed as they traverse the device,
and finally enter the outlet. We represent the device as a
collection of interconnected elements (figure 1(b)), including
mixing channels, combiners (each with two input and one
output streams), splitters (each with one input and two output
streams) and reservoirs. Note that the multi-input junction
at the inlet of the main channel is modeled as a cascade
concatenation of combiners. Then a system model can be
constructed from the element models, which are linked in
correspondence to the device topology. An appropriate set
of parameters (called interface parameters) is embedded at
the element interfaces to enable communication of flow and
concentration information between adjacent elements. As all
element models are parameterized and reusable, the user can
quickly compose and modify the device design in an efficient
top-down manner [20, 21].
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Figure 1. (a) Sketch of a tree-like gradient generator. (b) Schematic for the systematic representation of the generator.

3. Modeling of concentration gradient generators

In this section, we will first present models for the constituent
elements in our systematic representation scheme. These
element models will then be integrated for systematic
evaluation of generator designs.

3.1. Element models

We develop models for mixing channels, combiners and
splitters, which are characterized by pressure-driven laminar
flow and molecular diffusion-based sample transport.

3.1.1. Mixing channels. In this section, we consider
analytical solutions of pressure-driven fluid flow and sample
transport in a mixing channel. Neglecting entry regions at
the channel inlet, the fluid flow is fully developed within the
channel and governed by

∂2u

∂y2
+

∂2u

∂z2
= − 1

µ

∂P

∂x
(1)

where x, y and z are axial, transverse and depth-wise
coordinates respectively, µ is the buffer’s dynamic viscosity,
u is the axial fluid velocity. Here, x ∈ [0, L], y ∈ [0, w] and
z ∈ [0, h]; and L, w and h are the channel’s length, width
and depth, respectively. For fully developed flow, dP/dx =
�P/L = const, where �P is the pressure difference applied
over the channel length. Equation (1) can be solved
analytically [22] to yield the flow resistance of the channel:

R = �P

q
= 12βLµ

w4
[
1 − 192β

π5

∑∞
i=1,3,5,...

tanh(iπ/2β)

i5

] (2)

where q = ∫ h

0

∫ w

0 u dy dz is the volumetric buffer flow rate,
and β = w/h is the channel’s aspect ratio. Equation (2)
shows that in terms of fluid flow each mixing channel can be
represented as a resistor. Thus, a steady-state pressure-driven
flow network can be treated as a network of electrical resistors,
with pressures and volumetric flow rates analogous to voltages
and currents. Kirchhoff’s and Ohm’s laws hence can be used to
compute pressures at element terminals and flow rates through
the elements.

Steady-state sample transport in a mixing channel is
governed by the convection–diffusion equation

u
∂c

∂x
= D

(
∂2c

∂x2
+

∂2c

∂y2
+

∂2c

∂z2

)
(3)

where c is the sample concentration and D is the sample’s
molecular diffusivity. Two assumptions are made to simplify
this equation. First, we assume that the channel is flat, i.e., the
aspect ratio is large: β � 1. It can then be shown [13, 23,
24] that for flat channels velocity profiles along the channel
width are approximately uniform and sample transport is not
affected by the depth-wise velocity distribution due to small
diffusion times along the depth. This implies that the axial
velocity u in equation (3) can be replaced with the cross-
sectional average velocity, U = q/wh. In addition, depth-wise
concentration variations can be ignored, i.e., ∂2c/∂z2 ≈ 0. The
second assumption is that the channel is long, i.e., h � L and
w � L, which implies that axial diffusion is also negligible
(i.e., ∂2 c/∂x2 � ∂2c/∂y2). Thus, equation (3) is simplified to

U
∂c

∂x
= D

∂2c

∂y2
. (4)

The sample concentration profiles at the inlet and outlet
can be represented in terms of Fourier series: cin(η) =∑∞

n=0 d(in)
n cos(nπη) and cout(η) = ∑∞

n=0 d(out)
n cos(nπη),

where η = y/w is the normalized transverse coordinate along
the channel width. Equation (4) can be solved, also in Fourier
series, to yield the input–output relationship of the Fourier
coefficients dn

d(out)
n = d(in)

n e−(nπ)2τ (5)

where τ = L/(wPe) is the dimensionless sample residence
time in the channel, Pe = Uw/D is the Peclet number, which is
a characteristic ratio of convective and diffusive rates in sample
transport. Note that d

(in)
0 = d

(out)
0 is the average concentration

over the channel cross section. In contrast to results obtained
in [13], equation (5) holds for arbitrary flow rates and general
concentration profiles at the inlet.

Equation (5) is also applicable to a curve-shaped turn
of rectangular cross section with the centerline arc length
given by L = rcϕ, where rc is the mean radius and ϕ is the
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Figure 2. Modeling approach for the (a) combiner and (b) splitter. s is the merging or splitting position between the two branch streams.

included angle of the turn. It should be pointed out that for
electrokinetic flow, as long as the similitude between electric
fields and electrokinetic flow holds [20], equations (4) and (5)
are valid regardless of the channel’s aspect ratio.

3.1.2. Combiners. The combiner is another element
commonly used in gradient generators. In a combiner two
incoming streams with certain sample concentration profiles
are juxtaposed and emerge as a single combined stream. As
the flow path lengths of the combiner are negligible, such an
element can be assumed to have zero physical size. Thus,
a combiner can be represented as three resistors with zero
fluidic resistance between each terminal and the internal node
N (figure 2(a)):

Rl = Rr = Rout = 0 (6)

where the subscripts l, r and out represent the left and right
inlets and the outlet, respectively.

Denote by d(l)
m and d(r)

m (m = 0, 1, 2, . . . ) the Fourier
coefficients of the sample concentration profiles at the left
and right inlets, respectively. They can be used to obtain the
Fourier coefficients d(out)

n (n = 0, 1, 2, . . .) at the combiner
outlet as follows [20, 21] with an assumption that sample and
buffer have same viscosity,

d(out)
n =




d
(l)
0 s + d

(r)
0 (1 − s), if n = 0

s
∑∞,if m�=ns

m=0 d(l)
m

f1 sin(f2)+f2 sin(f1)

f1f2
+ s

∑∞,if m=ns
m=0

× d(l)
m + (1 − s)

∑∞,if m=n(1−s)
m=0 (−1)n−md(r)

m

+ 2(−1)n(1 − s)
∑∞,if m�=n(1−s)

m=0 d(r)
m

×
(

cos(F2/2) sin(F1/2)

F1
+ cos(F1/2) sin(F2/2)

F2

)
,

if n � 1

(7)

where s = ql /(ql + qr) is the flow ratio, the normalized flow rate
of the left-side stream, which gives the normalized position of
the interface between the incoming streams. In equation (7),
f1 = (m − ns)π , f2 = (m + ns)π , F1 = (m + n − ns)π and
F2 = (m − n + ns)π . Since the sample concentration profiles
from the inlets are scaled down at the outlet, the Fourier series
components at the inlet are not orthogonal to those at the outlet.
Therefore, different indices m and n are used at the inlets and
outlet, respectively.

3.1.3. Splitters. The splitter is the dual of the combiner, and
splits a single incoming stream into two that emerge at the left-
and right-side outlets (figure 2(b)). Such an element can also
be represented by three zero-resistance flow resistors,

Rin = Rl = Rr = 0 (8)

where subscripts in, l and r represent the inlet, the left and
right outlets, respectively.

Let d(in)
m (m = 0, 1, 2, . . . ) be the Fourier coefficients of

the sample concentration profile at the inlet. The Fourier
coefficients at the left and right outlets are given by

d(l)
n =




d
(in)
0 +

∑∞
m=1 d(in)

m sin(φ1)/φ1, if n = 0

2
∑∞,if m�=n/s

m=0 d(in)
m (−1)n+1φ1 sin(φ1)/f1f2

+
∑∞,if m=n/s

m=0 d(in)
m , if n � 1

(9)

and

d(r)
n =




d
(in)
0 − ∑∞

m=1 d(in)
m sin(φ1)/φ2, if n = 0

2
∑∞,if m�=n/(1−s)

m=0 d(in)
m φ2 sin(φ1)/F1F2

+
∑∞,if m=n/(1−s)

m=0 (−1)m−nd(in)
m , if n � 1

(10)

where f1 = (n − ms)π , f2 = (n + ms)π , F1 = (n + m −
ms)π , F2 = (n − m + ms)π , φ1 = msπ and φ2 = m(1 −
s)π . Here, s = ql/(ql + qr) is the splitting flow ratio, as
well as the normalized interface position between the two split
streams. Again, in equations (9) and (10), the sample and
buffer streams are assumed to have equal viscosity. By the
same reason, different indices m and n are used at the inlet and
outlets.

3.2. Validity of element models

The element models are valid when fluid streams in an element
are laminar and when axial diffusion effects are negligible
compared with transverse diffusion effects. In addition,
secondary flow in junctions (combiners and splitters) and turns
must be negligible. These impose constraints to operational
Reynolds, Dean and Peclet numbers in our models, which are
in general satisfied in practical gradient generators.

First, for the flow to be laminar in closed shapes such
as channels and junctions, the Reynolds number in general
needs to be much smaller than 2300 [22]. In addition,
secondary flows (which may be chaotic) in junctions such
as combiners and splitters must be negligible, which requires
the Reynolds number to be further smaller, e.g., Re � 100
[25]. This is indeed true for concentration gradient/array
generators, which critically depends on laminar–diffusion
behavior of micro flow. Such devices typically involve
flows of several mm s−1 or smaller in velocity [2, 5, 12,
13, 17, 18, 26], considering its physiological relevance [17]
and practical requirements on sample consumption, chip size,
reaction time, and reproducible, precise and accurate species
quantity control. With the microscale dimensions of gradient
generation elements, the Reynolds number is typically smaller
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than 1. Thus, our junction models are valid in practice. For
example, in all concentration gradient generator examples
below (section 5), the maximum flow speed is 1.53 mm s−1,
yielding a Reynolds number of 0.15.

We have also extended the model (equations (2) and (5))
to turns with the assumption that curvature-induced secondary
flow is negligible. Generally, this assumption is valid when
the Dean number (De), a measure of the relative magnitude
of the secondary flow with respect to the main flow, is of 1 or
smaller [27–29]. This dimensionless parameter is defined for
a turn with a rectangular cross section as De = Re

√
dh/rc

[27–29], where dh is the channel’s hydraulic diameter. For
channels with large aspect ratios (β � 1) as considered by
our models, De ≈ Re

√
2b/β, where we recall that w is the

channel width and b = w/rc is the channel curvature. As b
and Re are both smaller than 1 in our proposed generators,
we arrive at De < 1. Therefore secondary flow induced by
channel curvature should be negligible.

Finally, axial diffusion is neglected in the mixing channel
model. This is valid when Pe � 1, so that the effect of
axial diffusion is negligible compared with that of transverse
diffusion. This is generally true for practical concentration
generators. Specifically, for such devices, the channel width
w ∼ 100 µm or larger, which allows good resolution of
detection and array output and slow gradient decay. In
addition, flow speeds are on the order of U ∼ 1 mm s−1

and the sample diffusivity D ∼ 10−10 m2 s−1, yielding
Pe ∼ 1000. Therefore, axial diffusion is in general negligible
in concentration gradient generators considered by our model.

3.3. Systematic modeling

We now integrate element models to obtain a system model for
simulation. The challenge is to communicate both fluid and
sample transport information between neighboring element
models at their interfaces. This is accomplished by defining
two sets of interface parameters at inlets and outlets of the
element model as shown in figure 2. For an element j, we
have fluid pressure (Pi)

j at its terminals and
{
d(i)

n

}j
, the set

of Fourier coefficients of the concentration profile along the
channel width [20], where the index i has values in, out, l or
r, respectively, to represent the element’s inlet, outlet, left or
right inlets/outlets (for combiners and splitters). Parameters
between two neighboring elements are then set equal, i.e.,
(Pin)

j+1 = (Pout)
j and

{
d(in)

n

}j+1 = {
d(out)

n

}j
because of

continuity requirements.
Simulation using the system model involves computing

both fluidic parameters (including pressure and flow rates)
and sample concentrations in the network. Given system
topologies, element geometries and applied pressures (or
equivalently volumetric flow rates) at reservoirs, pressures
(Pi)

j at the element terminals are first computed for the entire
generator network by Kirchhoff’s and Ohm’s laws based on
electric analogy. The flow rate (q), average velocity and
direction of the stream within each element, as well as the
flow ratio at combiners and splitters are then calculated. With
these results and user-input sample diffusivity D, Fourier
coefficients

{
d(out)

n

}j
of sample concentrations at the outlets

of element j are determined from the corresponding values at
the element’s inlets, and then assigned as an input to the inlet

of the immediately downstream element j + 1. This procedure
starts from the most upstream sample reservoir.

The system model is implemented using symbolic
expression and solved with numerical substitution in
Mathematica 5.0 [30]. To capture abrupt gradients such as
saw-tooth-shaped profiles, one hundred Fourier terms (n = 99)
are found to yield sufficient accuracy. For smooth gradients
such as multiple-bell-shaped profiles, ten Fourier terms
(n = 9) are used.

4. Model validation

In this section, our system modeling results on concentration
gradient generation will be validated numerically and
experimentally.

4.1. Numerical analysis

Numerical analysis is performed with the commercial finite
volume method (FVM) simulation package CFD-ACE+ [31]
and used as a baseline for validation of our system models.
We invoke the CFD-ACE+ modules of incompressible fluid
flow (Navier–Stokes equation) and biochemistry (convection–
diffusion equation without reaction) to solve for the buffer
flow velocity and sample concentration in the 3D device.
The SIMPLEC algorithm was used for pressure–velocity
coupling. The differencing schemes of upwind and second
order limiter with blending factor of 0.1 are, respectively, used
for discretization of the velocity fields and analyte distribution.
The algebraic multigrid (AMG) iterative method was applied
for solving the linearized algebraic equations for an accelerated
convergence. The computational domain is meshed by a
block-structured grid. To capture the steep concentration
gradient generated at combining and splitting junctions and
mitigate numerical diffusion errors [32], very fine meshes in
the transverse direction are used. In addition, a polynomial-
type mesh in the axial direction (x-coordinate) is also selected
to enable fine meshes at the junction and resolve flow entry
effects on sample transport (inset in figure 5). To compare
systematic modeling and numerical results, a scalar index is
defined [20]:

M =
∫ 1

0
|cN − c| dη

/∫ 1

0
cN dη (11)

where c is the normalized concentration profile from the
analytical system models and cN is the depth-averaged
concentration profile from numerical analysis. Hence, M
represents the error of systematic modeling results relative
to the numerical analysis. The smaller M, the better the
agreement.

4.2. Experimental validation

Our systematic modeling results are compared with
experimental data reported by Walker et al [17], who
investigated the evolution of an initial stepwise profile in the
main mixing channel of the tree-like generator (figure 1).
The transverse concentration profile at the main channel
inlet consists of five discontinuous concentration steps arising
from the serial splitting, combing and mixing of the sample
in the tree-like network, and is quantitatively described
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Figure 3. The systematic modeling results are compared with the
numerical analysis and experimental data from the literature [17] on
the evolution of an initial stepwise (five steps) profile in the main
mixing channel of a tree-like gradient generator. (a) 1 mm, (b) 4 mm
and (c) 8 mm downstream of the channel inlet.

as: c|x = 0 = 0 for 0 � η � 0.2; c|x = 0 = 0.25 for 0.2 < η � 0.4;
c|x = 0 = 0.5 for 0.4 < η � 0.6; c|x = 0 = 0.75 for 0.6 < η � 0.8;
c|x = 0 = 1 for 0.8 < η � 1. Figure 3 shows the variation of the
sample (FITC-dextran) concentration profile along the main
mixing channel width (y-coordinate) at three different axial
positions (x-coordinate), obtained from the system model,
numerical analysis as well as extracted experimental data.
It can be seen that the system model agrees well with the
numerical and experimental data. The worst relative error is
M = 4.6% at x = 1 mm, which mainly occurs at the channel
walls and can be attributed to the associated non-uniform
transverse velocity profile as well as the non-fully developed
concentration distributions along the channel depth. The
discontinuity of the initial profile (at the channel inlet) smears
out due to transverse diffusion as the sample migrates down
the mixing channel. It is thus concluded that our analytical
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Figure 4. The transverse sample concentration profiles immediately after and far downstream of the merging junction in (a) a Y-mixer and
(b) a cross-mixer.

system model has sufficient accuracy to be used to guide the
gradient generator design.

5. Application to concentration gradient generator
design

In this section, we will illustrate the utility of our systematic
modeling approach by applying it to design of practically
useful concentration gradient generators. Specifically, the
approach is used to model a novel and compact generator
that takes advantage of partial mixing. The modeling results
again will be compared with the 3D numerical analysis. Note
that while we choose to focus on devices that exploit partial
mixing, those based on complete mixing can be treated as a
straightforward special case.

Although complex concentration gradients can be
generated from complete mixing [12, 15, 16], they can be
implemented with more efficient and compact partial mixing
devices, which however have not been adequately explored.
Here we propose a generator device which consists of a simple
collection of Y- (or T-) and cross-mixers whose incompletely
mixed concentration profiles are combined to produce desired
complex gradients. In a Y-mixer, sample and buffer solutions
merge at the junction and then mix with each other in the
downstream mixing channel. The extent of sample mixing
shapes its concentration profiles (figure 4(a)), for example,
immediately after the junction, an abrupt step-shaped profile
results and the transverse position of the discontinuity is
determined by sample and buffer flow rates. However at the
far downstream, an approximately linear concentration profile
forms, which exhibits a good linearity at the channel center
(∼20–80% of the channel width). Similarly, a bell-shaped
profile that has been employed in [2] to investigate neutrophil
chemotaxis can be created by a cross-mixer (figure 4(b)). The
sample is injected from the middle channel and sandwiched
by buffer solvent from side channels [20]. Inter-stream
diffusion in the mixing channel smoothes and produces sample
concentration profiles with different width and height. By
juxtaposing these constituent profiles, temporally and spatially
stable gradients of complex shapes (figures 5 and 7) can be
attained. As the constituent profiles are independent of each
other, their shape characteristics (e.g., the width, slope, peak
and mean concentration values) can be individually changed
by choice of branch flow rates, channel sizes and reservoir
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Figure 5. Network topology and dimensions of a saw-tooth concentration generator. A saw-tooth-shaped profile is produced by combining
three constituent linear profiles, each evolving from a single Y-mixer. The inset shows the grid plot of the cross junction in the numerical
(CFD-ACE+) simulations. 156 cells in the transverse direction of the main channel are used to resolve the steep gradient. Axially, more grid
cells are used at the merging junction region to capture the flow entry effects on sample transport.
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Figure 6. Numerical contour plots of the sample concentration and comparison between numerical analysis and systematic modeling results
on concentration profiles across the channel width (extracted 400 µm downstream of the junction). The flow rate in all branch channels 1–6
is 864 nl min−1. The initial reservoir sample concentration values are shown above the individual profile. Three approximately linear
constituent profiles with (a) the same peak and mean concentration values and slope and (b) the same mean values but different slopes and
peak values.

sample concentrations. In the examples below, all channels
have a depth of h = 60 µm with an aspect ratio β of 5–20.
The volumetric flow rate in the main mixing channel
(after juxtaposition of the constituent profiles) is fixed at
5.18 µl min−1, corresponding to a practically relevant velocity
of 1200 µm s−1 [17]. We use a typical sample diffusivity of
D = 1×10−10 m2 s−1, and the normalized reservoir sample
concentration ranging from 0 to 1, unless otherwise noted.

5.1. Saw-tooth-shaped concentration profiles

Transverse saw-tooth-shaped concentration profiles [12] can
be generated by juxtaposing multiple Y-mixing units (figure 5).
Sample solutions with different concentrations are released
from two adjacent reservoirs in a Y-mixing unit (e.g., reservoirs
1 and 2), and then mix with each other in the serpentine mixing
channel to generate an approximately linear profile. The peak
and mean concentration value and the slope of the constituent
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Figure 7. (a) Network topology and dimensions of a multiple-bell-shaped concentration generator. The profile is produced by combining
two constituent bell-shaped profiles, each arising from a single cross-mixing unit. (b) Numerical contour plot of the sample concentration at
the merging junction. (c) Comparison between numerical and systematic modeling results on the transverse concentration profile, extracted
at 400 µm downstream of the junction in the main mixing channel. Flow rate in branch channels 1–6 is 864 nl min−1.

profile are determined from the initial reservoir concentrations,
serpentine channel sizes, and sample flow rates that can
be effectively captured by our system model (equations (5)
and (7)). Eventually, the approximately linear profiles from
serpentine mixing channels are combined in the main mixing
channel to achieve a saw-tooth-shaped distribution.

Figure 6 shows various saw-tooth-shaped profiles from
systematic and computational modeling results. The device
in figure 5 has the highest Reynolds number Re = 0.15
and Dean number De = 0.07, i.e., the effects of secondary
flow in the turns are negligible (see section 3.2). Thus, we
could treat the serpentine channel including multiple elements
(straight channels and turns) as a single channel whose length
is the sum of those of all elements, and further reduce
computational costs. Specifically, six flow reservoirs, one
waste reservoir, eleven channels and five combiners are used
in the systematic simulation. The slopes, mean and peak
values of each constituent profile are varied by modulating its
corresponding reservoir sample concentrations. In figure 6(a),
the exactly same linear profiles are duplicated along the
channel width. Figure 6(b) demonstrates a saw-tooth shape

consisting of three constituent concentration profiles, each
having the same mean values but different peak values and
slopes. As an extreme case, given a sufficiently fast flow
velocity or an extremely short serpentine mixing channel,
sample mixing in the Y-mixing unit is negligible, leading to a
profile comprised of three square waves in the main channel.
In figure 6, steep concentration discontinuities are created at
the interface between streams, which can be useful for studying
the cell behavior subjected to abrupt gradients [2]. Excellent
agreement between numerical and systematic modeling results
with the worst-case error of M = 4.8% indicates that our model
is able to accurately predict discontinuous profiles as well as
their evolution along the stream direction.

5.2. Multiple-bell-shaped concentration profiles

To create a multiple-bell-shaped concentration profile, cross-
mixing units can be assembled laterally (figure 7(a)).
Constituent bell-shaped concentration profiles first form in
the cross-mixing units as described above, which then merge
in the main mixing channel to create a multiple-bell-shaped
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profile. Figures 7(b) and (c) show the numerical contour
plot of the sample concentration as well as the comparison
between numerical analysis and systematic modeling results.
Different from that in figure 4(b), asymmetric constituent
bell-shaped profiles are generated in the cross-mixing units,
which is enabled by feeding different sample concentrations at
reservoirs 1, 3 and 4, 6 (figure 7(b)), leading to a higher sample
concentration value at the centerline of the main channel.
In the systematic simulation, six flow reservoirs, one waste
reservoir, ten channels and five combiners are used for this
example. An excellent agreement between numerical and
systematic modeling results has been obtained with the relative
error M = 4%. Finally, we could also generate a hybrid
concentration profile consisting of both linear and bell-shape
profiles by combining cross- and Y-mixing units (results not
shown). A good agreement between numerical analysis and
system model with M = 4.9% is achieved.

The generator design enables accurate and efficient
generation of complex gradients in a simple network, as long
as the desired concentration profile does not include a strictly
linear or parabolic shape. The impermeability of channel walls
to mass transfer causes bending of the profile at the sidewalls as
shown in figure 4, making strictly linear or parabolic gradients
inaccessible. This limitation could be addressed by attaching
three splitting channels at the end of the Y- or cross-mixing
channel. Thus, the bent sides of the concentration profile are
chopped off and the strictly linear or parabolic portion in the
middle is remained and output for analysis. In this occasion,
with inclusion of the splitter model (equations (9) and (10)),
our systematic approach is still applicable.

Our system model has demonstrated vast improvements
in computational efficiency over the numerical analysis. On
a PC with an AMD Athlon 2 GHz processor and 1 GB RAM
operating in MS-Windows, the systematic simulations of the
saw-tooth-shaped (with 100 Fourier terms) and multiple bell-
shaped gradient generators (with 10 Fourier terms) above were
completed, respectively, within 5 and 1 s using ∼15 MB RAM.
These correspond to at least 3000-fold speed-up compared to
numerical simulations, which used 4.7 and 4.3 h, 890 000 and
820 000 grid cells, 990 and 930 MB memory, respectively, for
the saw-tooth and bell-shaped profiles on the same platform.
The computational advantage of our system model is thus
clear, making possible systematic optimal design of gradient
generators, which may involve hundreds or thousands of
iterative simulations to achieve a user-specified concentration
gradient.

6. Conclusion

A systematic modeling approach has been presented for use as
a tool to guide the design of concentration gradient generators.
A generator with virtually arbitrary geometry is represented
as a collection of elements (e.g., mixing channels, combiners
and splitters) with relatively simple geometries. Analytical
and parameterized models for such elements in pressure-
driven flow have been developed to capture the overall effects
of generator geometry, material properties and operational
procedures on sample transport. These element models are
then integrated, by use of the appropriate interface parameters
at element terminals, into a network, resulting in a system

model for the entire generator. The model has been compared
with experimental data extracted from the literature, as well as
with the full numerical analysis.

The generator system model has been exploited to propose
a novel generator capable of creating stable and complex
concentration gradients. The fundamental approach is to
juxtapose simple (e.g., approximately linear and bell-shaped)
constituent concentration profiles resulting from Y- or cross-
mixers to obtain composite profiles with a higher level of
complexity (e.g., saw-tooth and multiple-bell shapes). The
class of achievable concentration profiles (e.g., linear or bell-
shaped) is determined from the type of the mixers (e.g., Y- or
cross-mixers) and their spatial configurations. The constituent
profile details (e.g., slope, mean and peak concentration values,
position and width) are primarily determined from the initial
reservoir concentrations, flow rates, sample properties as well
as the channel dimensions. Therefore, upon integrating with
optimization algorithm and iterative evaluation engines, our
system model can be used to guide the selection of appropriate
parameters to attain desired concentration profiles.
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