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This paper presents an analytical and parameterized model for analyzing the effects of Joule heating on analyte

dispersion in electrophoretic separation microchannels. We first obtain non-uniform temperature distributions

in the channel resulting from Joule heating, and then determine variations in electrophoretic velocity, based on

the fact that the analyte’s electrophoretic mobility depends on the buffer viscosity and hence temperature. The

convection–diffusion equation is then formulated and solved in terms of spatial moments of the analyte

concentration. The resulting model is validated by both numerical simulations and experimental data, and

holds for all mass transfer regimes, including unsteady dispersion processes that commonly occur in microchip

electrophoresis. This model, which is given in terms of analytical expressions and fully parameterized with

channel dimensions and material properties, applies to dispersion of analyte bands of general initial shape in

straight and constant-radius-turn channels. As such, the model can be used to represent analyte dispersion in

microchannels of more general shape, such as serpentine- or spiral-shaped channels.

1 Introduction

Electrophoretic separation microchips have been actively
pursued in the past decade,1–6 and hold great promise for a
wide spectrum of applications in biology and chemistry.7,8 By
performing separations in microchannels that are integrated
with other microfluidic components, microchip electrophoresis
is a key technology to enable lab-on-a-chip microsystems that
integrate chemical analysis with other bioanalytical function-
alities.7,8 While microchip electrophoresis is of great impor-
tance, the creation of such devices that have optimized
geometry and performance and are suitable for specific
applications is still an art, requiring long development cycle
times. This is in a large part due to a lack of models that are
accurate to capture the physics of electrophoretic separation,
and yet efficient to allow fast evaluation of candidate designs in
the chip design process. This paper addresses this issue by
presenting a parameterized model for analyzing analyte
dispersion caused by Joule heating effects in electrophoresis
microchannels.

In electrophoresis, an electric field is used to drive a band of
charged analyte molecules through a microchannel filled with a
conducting buffer. Different species in the analyte are thereby
separated by their different electrophoretic mobilities. This
process, however, is accompanied by the resistive heating, or
Joule heating (JH), of the buffer as the electric field also induces
a current. Joule heating leads to non-uniformities in the buffer
temperature and electrophoretic mobility, which contribute to
dispersion of the analyte transport. Joule heating can be
significant in the presence of high electric fields, which are
desired for improving electrophoretic separation speed and
resolving power.9,10 There can also be appreciable Joule
heating in microchannels of relatively large cross-sectional
dimensions, which are at times used to allow longer detection
cells, higher detectability, reduced adsorption of analytes to
channel walls, and less stringent requirements on sample
injection schemes.11 It is therefore important to develop models

that account for the effects of Joule heating on analyte
dispersion to allow optimal design of electrophoretic separa-
tion microchips.

Closed-form and parameterized models are highly desirable
for describing dispersion in microchip electrophoresis, as they
provide computational efficiency appropriate for use in
iterative design processes to explore the parameter space.12,13

Taylor14,15 and Aris16 pioneered studies of dispersion phenom-
ena by considering dispersion of a solute in a hydrodynamically
driven flow in a circular capillary, and developed the classical
Taylor–Aris theory in which dispersion at large analyte
migration time (i.e., steady state) is represented by a constant
dispersion coefficient. This theory has been used extensively in
capillary electrophoresis. In particular, Knox and Grant17,18

investigated JH-induced Taylor–Aris dispersion of electro-
phoresis in a circular capillary, while Cifuentes and Poppe19

studied steady-state JH-induced dispersion in a rectangular
capillary that is assumed to have an infinitely large aspect ratio.
In the context of microchip electrophoresis, Molho10 presented
an analytical and steady-state model for JH-induced dispersion
in rectangular channels that is based on models developed for
circular capillaries. For electrophoresis in a constricted turn, he
also investigated dispersion effects of Joule heating and turn
curvature at specific regimes, which were assumed to be
decoupled. Jacobson et al.9 used the results of Knox and Grant
for the capillaries to evaluate Joule heating dispersion effects in
rectangular microchannels. It is important, however, to note
that in microchip-based electrophoretic separations, dispersion
is often not in steady state due to short analyte residence times
in the channel. The use of steady-state dispersion models for
unsteady dispersion, as well as approximation of rectangular
channels by capillaries, in general leads to significant errors.
Unsteady dispersion in rectangular channels has been inves-
tigated by Doshi et al.20 in the context of a gravity-driven
hydrodynamic flow. They found that such dispersion involves
three stages characterized by diffusion time constants along the
two cross-sectional dimensions, and differs distinctly fromD
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dispersion in a hydrodynamic flow between two parallel plates,
as further discussed by Dorfman and Brenner.21

We present an analytical model for Joule heating-induced
analyte dispersion in electrophoretic separation microchannels.
JH-induced variations in temperature and electrophoretic
velocity in the channel are first obtained to establish the
mass transfer equation, which is then formulated in terms of
spatial moments of analyte concentration16 (Section 2). The
equation is solved to yield an analytical and parameterized
model for JH-induced dispersion, which holds for analyte
bands of general initial shape in both straight channels and
constant-radius turns (Section 3). The model is validated with
experimental data and full numerical simulation results, and
employed to investigate the influence of geometrical and
operational parameters on JH-induced dispersion in both
straight channels (Section 4) and turns (Section 5). A summary
of the paper and a brief discussion of future work are finally
presented (Section 6).

2 Governing equations

This section presents the governing equations for dispersion, in
the presence of Joule heating, of electrophoretic transport of a
charged analyte in a microchannel. The microchannel is
bounded by a pair of planes parallel to the chip surface, and
a second pair of planes or a pair of concentric circular
cylindrical surfaces perpendicular to the chip surface (Fig. 1).
The channel hence has constant rectangular cross sections with
width w, height h, and aspect ratio b ~ w/h. The line connecting
the cross-sectional centers (the channel axis) is straight with
length L, or a circular arc with average radius R, included angle
Q, and length L ~ RQ. In the latter case the channel is called a
constant-radius turn, and it is assumed that the width-to-radius
ratio is small: b ¼D w=R%1. We also assume that the channel is
long, i.e. w/L % 1 and h/L% 1. These straight and constant-
radius turn geometries are sufficiently general to be used to
represent the majority of general-shaped microchannels that
are commonly seen in practice.22

The electrophoresis of the analyte band is considered in the
coordinate frame as shown in Fig. 1. The governing equations
will be given for a constant radius-turn, which, when b ~ 0,
reduces to the special case of a straight channel. Given a
voltage V applied across the length of the channel, it can be
shown that the electric field is approximately given by22,23

(Ex, Ey, Ez) ~ (E0[1 1 b(1/2 2 z/w)],0,0) (1)

where E0 ~ V /L. That is, the electric field, directed along the
channel axis, is constant in a straight channel, and varies
linearly across the width of a turn.

The electric field induces a current in the conducting buffer
generating Joule heating power17,18

_qq~rE2 (2)

where r is the buffer’s electric conductivity. JH will cause
temperature variations within the microchannel. Such

temperature variations can be assumed in steady state, as the
time required for the buffer to reach thermal equilibrium within
the channel is generally much smaller than the characteristic
diffusion time. For example, for a channel (h ~ 50 mm) filled
with an aqueous buffer, its thermal time constant is y1.8 6
1023 s, which is 100 fold less than the transverse diffusion time
(y2.5 6 1021 s) of an ion species (D y 1 6 1029 m2 s21). In
addition, as the channel length is much larger than the cross-
sectional dimensions, the temperature distribution can be
assumed to be independent of the axial coordinate x. Thus, by
neglecting terms of order b2 or higher,23 the steady-state heat
transfer problem is governed by a two-dimensional equation:

L2h

Ly2
z

L2h

Lz2
~{

_qq

k
(3)

where h ~ T 2 Tw, T is the buffer temperature, Tw is the buffer
temperature at the channel wall, and k is the buffer’s thermal
conductivity. Here, to a first approximation, Tw is taken to be
uniform everywhere on the channel wall. This approximation is
valid especially when the substrate is a good thermal conductor
(e.g., silicon) or the microchannel has a large aspect ratio (b &
1, so that the temperature non-uniformity only occupies a small
portion of the cross sectional perimeter and around the channel
corner). In this case h ~ 0 everywhere on the channel wall.

The effect of Joule heating on electrophoretic transport is
primarily manifested via the temperature dependence of the
buffer viscosity g. Within temperature ranges relevant to
microchip electrophoresis, the viscosity is approximately linear
in temperature: g ~ gw(1 2 ah), where gw is the buffer viscosity
at the channel wall, and a is the buffer’s temperature coefficient
of viscosity.17,18 The electrophoretic mobility of the analyte is
given by m ~ aef/g, where e is the permittivity of the buffer, f
the zeta potential and a a constant.18 It has been experimentally
shown that ef is independent of temperature.24 Therefore m
depends on temperature only via the temperature dependence
of viscosity. When ah % 1, we approximately have m ~ mw(1 1

ah), where mw ~ aef/gw. It follows that the electrophoretic
velocity, given by (vx, vy, vz) ~ (mEx,0,0),10,17–19 is non-uniform
over the channel’s cross section, and causes dispersion of
analyte transport. The combined effect of JH and turn
geometry on dispersion is represented by an apparent axial
analyte velocity ux ~ vx/(1 2 b(1/2 2 z/w)).23 For convenience
we use a dimensionless frame j ~ (x 2 Ut)/h, g ~ y/h and f ~

z/h, which moves with the average apparent analyte velocity
U ~ uw,0(1 1 a), and a dimensionless time t ~ Dt/h2. Here
uw,0 ~ mwE0 and the overbar denotes cross-sectional average.
The convection–diffusion equation, which governs the disper-
sion process, then takes the form22

Lc

Lt
~

L2c

Lj2
z

L2c

Lg2
z

L2c

Lf2
{Pex

Lc

Lj

Lc=Lg g~0,1~0
�
� , Lc=Lf f~0,b~0

�
� , c t~0~j c(j,g,f,0)

(4)

where c is the analyte concentration, Pe ~ Uh/D is the Peclet
number representing the ratio of convection and diffusion

Fig. 1 Geometry and coordinate frame for (a) a straight channel and (b) a semi-circular turn.
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transport rates. Here, x is the normalized apparent analyte
velocity with respect to the average U and is given by

x(g,f)~
ux(g,f){U

U
~

e(w�w)
.

(1zew) for a straight channel

e(w�w)zb(1{2f=b)
h i.

(1zew) for a turn

8

><

>:

(5)

where e ~ a(rE2
0h2/k) and w ~ h/(rE2

0h2/k) ~ ah/e, which can
be found from eqns. (1)–(3). From these equations we also
note that rE2

0h2/k is a characteristic temperature due to
JH. Therefore the dimensionless parameter e is the character-
istic of JH intensity and will be hereafter called the
Joule heating coefficient. Also note that

ffiffi
e
p

can be thought
of as a dimensionless electric field strength. The dimensionless
variable w, which depends only on the dimensionless curvature
b and aspect ratio b (Section 3), can be interpreted as the
normalized buffer temperature. Terms of the second or
higher order in b and a have been neglected for a turn in
eqn. (5).

Eqn. (4) can be formulated in closed form in terms of spatial
moments of the analyte concentration.10,16 Specifically, if the
entire analyte band is contained in the channel, eqn. (4) holds
effectively for 2‘ v j v ‘ such that c A 0 as j A ¡‘. Define

cp(g,f,t)~

ð?

{?
jpc(j,g,f,t)dj and mp(t)~�ccp~

1

b

ðb

0

ð1

0

cpdgdf (p~0,1,2,:::)

(6)

where cp is the pth moment of the concentration in a
longitudinal filament of the analyte band that intersects the
cross sections at g and f, and mp is the pth moment of the cross-
sectional average concentration, respectively. Eqn. (4) can be
integrated with respect to j to yield

Lcp

Lt
~

L2cp

Lg2
z

L2cp

Lf2
zp(p{1)cp{2zpPexcp{1

Lcp=Lg g~0,1~0
�
� , Lcp=Lf f~0,b~0

�
� , cp t~0~j cp0(g,f)~

ð?

{?
c(j,g,f,0)jpdj:

(7)

which can be further integrated over the cross section to obtain

dmp

dt
~p p{1ð Þcp{2zpPexcp{1

mp(0)~mp0~
1

b

ðb

0

ð1

0

cp0(g,f)dgdf

(8)

In both eqns. (7) and (8), any term that contains ci with i v 0
is set to zero. To determine the broadening of the analyte
band, these equations can be solved to obtain moments up to
the second order. Then, c0(g,f,t) is the analyte mass in
the longitudinal analyte filament at g and f, while m0(t) is
the total analyte mass in the channel. Next, c1(g,f,t) is the
j-coordinate of the centroid of the longitudinal analyte
filament at g and f, and hence indicates the skew of the
analyte band. m1(t), the cross-sectional average of c1, is the
j-coordinate of the centroid of the entire analyte band. Finally,
m2(t) is used to determine the variance of the analyte band
(next section).

It should be noted that in addition to the electrophoretic
mobility m, other material properties, such as the buffer’s
electric conductivity r, thermal conductivity k, and the analyte
diffusivity D, in general also vary with temperature gradients
within the channel through the temperature dependence of the
buffer viscosity. However, the temperature dependence of these

parameters influences dispersion less significantly than the
temperature dependence of m. For example, from eqns. (2) and
(3), the non-uniform component of Joule heating, due to the
temperature dependence of r and k, is generally small
compared with the total Joule heating. In addition, from a
more general form of the convection-diffusion equation,25 it
can be shown that the effect on dispersion of temperature
dependence of D, compared with that of temperature
dependence of m, is of second order. Therefore, it is reasonable
to assume, as in the formulation above, that all material
properties except m are constant17,18 and can be evaluated at the
average buffer temperature in the channel.

3 Joule heating dispersion model

This section presents analytical models for dispersion of
electrophoretic transport in the presence of Joule heating.
These models are obtained by first solving eqn. (3) for cross-
sectional temperature distributions. Eqn. (5) then provides the
electrophoretic velocity profile, which can be used in solving
eqns. (7) and (8) for the moments of analyte concentration and
hence the dispersion characteristics of the analyte band.

The normalized buffer temperature w, introduced with
eqn. (5), can be found from eqns. (1)–(3):

w~(1zb)w1z
2bw2

b
(9)

where

w1~

1

2

1

4
{ g{

1

2

� �2

z
X?

i~1

({1)i

k3
i

cosh (ki(2f{b))

cosh (kib)
cos (ki(2g{1))

( )

w2~
X?

i~1

2b({1)iz1

ipli

{1z
e(1{g)

ffiffiffi
li

p
zeg

ffiffiffi
li

p

1ze
ffiffiffi
li

p

 !

sin
ipf

b

� �

with ki ~ (2i 2 1)p/2 and li ~ (ip/b)2 (i ~ 1, 2, 3,…).
The normalized velocity profile x is then obtained from eqn.

(5) and substituted into eqns. (7) and (8), which can be solved
for the moments of analyte concentration. The solution
procedure has been outlined elsewhere,22 with the difference
being that x here includes JH velocity contribution and varies
in both cross-sectional dimensions. First, by conservation of
mass, m0 is constant. We choose m0 ~ 1 without loss of
generality. In addition,

c0(g,f,t)~

ð?

{?
c(j,g,f,t)dj~1 (10)

provided the initial condition is such that
Ð?
{? c(j,g,f,0)dj~1.

This indicates that if all longitudinal analyte band filaments

have the same mass initially, then this will be the case at all

times. This is typically true in practice and will be assumed in

the remainder of this paper. For example, this is the case for an

analyte band that is initially a uniform rectangular plug (in a

straight channel or a turn).
For the first moment, it can then be found that m1(t) ~ 0 if

the origin of the moving frame is chosen such that it initially
coincides with the analyte band’s centroid. Thus, the centroid
and the moving origin coincide at all times if they do so
initially. The first moment c1, which represents the skew of the
analyte band, is found to be

c1 g,f,tð Þ~
X?

m~0

X?

n~0

Snm(t) cos (npg) cos
mpf

b

� �

(11)
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where S00(t) ~ S00(0) and

Snm(t)~Snm(0)e{lnmtz
Pexnm(1{e{lnmt)

lnm

if nzm§1, (12)

with Snm(0)~nnm

Ð b

0

Ð 1

0
c10(g,f) cos (npg) cos (mpf=b)dgdf and

lnm ~ (np)2 1 (mp/b)2 (n ¢ 0 and m ¢ 0). Here, nnm is
defined as n00 ~ 1/b, n0m ~ 2/b, nn0 ~ 2/b and nnm ~ 4/b for
n w 1 and m w 1, c10 is the initial skew (eqn. (7)). The Fourier
coefficients for the normalized velocity x are x00 ~ 0, x0m ~

ew0m 1 4b(1 2 (21)m)/lm, lm ~ (mp)2, xnm ~ ewnm,
wnm~nnm

Ð b

0

Ð 1

0
w cos (npg) cos (mpf=b)dgdf; n ¢ 0 and m ¢ 0.

The second-order moment m2 can be found by solving
eqn. (8) with p ~ 2. Then, the relationship s2 ~ h2 (m2/m0 2

m2
1/m2

0)10 yields the variance of the analyte band:

Ds2(t)

h2
~2tz

X?

n~0
nzm§1

X?

m~0

2Snm(0)Pexnm(1{e{lnmt)

bnnmlnm

z

X?

n~0
nzm§1

X?

m~0

2e2Pe2w2
nm(e{lnmtzlnmt{1)

(1ze�ww)2bnnml2
nm

z

X?

m~1,3,5:::

64b2Pe2(e{l0mtzl0mt{1)

(1ze�ww)2l2
0ml2

m

z

X?

m~1,3,5:::

16ebPe2w0m(e{l0mtzl0mt{1)

(1ze�ww)2l2
0mlm

(13)

where Ds2(t) ~ s2(t) 2 s2(0), and s2(t) and s2(0) are the
analyte band variance at time t and 0, respectively. It can be
seen from the right-hand side of this equation that the increase
in variance consists of contributions from molecular diffusion
(the first term), the initial skew (the second term), Joule heating
effects (the third term), turn geometry (the fourth term), and
interactions between Joule heating and turn geometry (the last
term). To our knowledge this is the first time these interactions
are considered in microchip electrophoresis models in all mass
regimes and in a coupled manner.

We now consider several special cases of electrophoretic
transport. First, note that if e % 1, eqn. (13) indicates that Joule
heating can be ignored. Analyte band broadening will then be
exclusively caused by diffusion and turn geometry, and the
details of this case have been discussed in ref. 22 Next, the Joule
heating dispersion model can be considerably simplified for
straight channels (b ~ 0) when no initial skew is involved; and
this case has been thoroughly discussed in ref. 26

Eqn. (13) shows the evolution of the band spreading within
the channels. In practice, chip designers are primarily interested
in the resolving power at the outlet of the electrophoresis
channel. Therefore, we introduce the plate number27,28

N~
L2

s2(tf )
(14)

and the dimensionless residence time

tf ~ tfD/h2 ~ (L/h)/Pe (15)

where L is the length of the separation channel (L ~ QR ~ Qbh/
b for a turn), and tf ~ L/U is the dimensional residence time of
the centroid of the analyte band in the channel. The plate number
can be interpreted as a normalized measure of resolving power of
an electrophoretic separation system, or in the context of this
paper, a component channel in such a system.

We have thus derived an analytical model for dispersion due
to Joule heating by focusing on electrophoresis. JH-induced
dispersion in electroosmotic flow (EOF) is not considered in the
model, but may be addressed by conceptually similar

approaches. In particular, for the special case of a straight
channel, dispersion caused by EOF may actually be negligible if
the electric double layer is thin compared with the channel
cross-section dimensions,29 if the channel wall temperature Tw

is uniform (otherwise, additional dispersion due to the
dependence of EOF mobility on temperature would need to
be included). Then, the current model will still be valid if the
moving frame is given velocity U + Ueof, where Ueof is the
EOF velocity (which is uniform over the channel cross
section) and the residence time in eqn. (15) is defined by
tf ~ LD/(U 1 Ueof)h

2.

4 Joule heating effects in straight channels

In this section, the analytical Joule heating dispersion model is
first verified with numerical simulations as well as experimental
data extracted from the literature.9 Then, a parametric study is
performed to investigate the dependence of JH-induced
dispersion on the applied electric field, channel length and
aspect ratio.

In Fig. 2, the JH dispersion model (eqn. (13)) for a straight
channel is compared with experimental data,9 where Rhoda-
mine B (RB) and Dichlorofluorescein (DCF) (whose diffusiv-
ities and mobilities are given in ref. 9) are separated in a straight
channel of dimensions 200 6 26 6 7 mm3. For consistency with
experimental data,9 the plate height H , defined as L/N, is
employed here as a measure of resolving power. It can be seen
that H obtained from the model is almost the same for RB and
DCF. This is consistent with the experimental data, in which
the RB and DCF plate heights do not differ significantly. The
model-predicted and experimentally determined plate heights
agree in the order of magnitude and exhibit the same trend in
their dependence on electric field. The seemingly systematic
deviation of the model from the experiment data could be
attributed to uncertainties in the values of the geometric and
material parameters given by the ref. 9 and non-uniform wall
temperature distributions that caused additional dispersion due
to non-uniform EOF (above).

The model-predicted evolution of the variance of an analyte
band in a straight channel is also compared with numerical
results. In this comparison, the channel is given a fixed width
h ~ 50 mm with an aspect ratio b varying from 1 to 8. The
following parameters are used: s2(0) ~ 3600 mm2 and Snm(0) ~
0 (t ~ 0 is the time instant when the band’s centroid is at the
channel entrance), E ~ 3.0 kV cm21, mw ~ 26 1028 m2 V21 s21,
k ~ 0.6 W m21 K21, a ~ 0.025 K21, r ~ 0.1 S m21, and
D ~ 3.0 6 10210 m2 s21. These values correspond to Pe ~
1072 and e ~ 0.94. As shown in Fig. 3, excellent agreement can
be observed between the analytical modeling and simulation

Fig. 2 Comparison of model-predicted and experimentally deter-
mined9 plate height H for Rhodamine B (RB) and Dichlorofluorescein
(DCF).
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results (within 2%). We also observe that when t is fixed, both
analytical and numerical results indicate that band broadening
generally increases with b, but not in a monotonic manner. This
is attributed to the role of transient dispersion and is explained
below.

We now demonstrate the utility of the model by applying it
to a parametric analysis of JH-induced dispersion in a straight
channel. It can be shown from eqns. (14) and (15) that the plate
number N depends on the parameters Pe, e, L/h and b for a
straight channel. For convenience of analysis and to aid
intuition, we consider the effects of these parameters by
examining the dependence of N on E0 as b (Fig. 4) or L/h
(Fig. 5) is varied. In this parametric analysis, the values of mw,
k, a, r and D are the same as those used above in the numerical
verification; s2(0) ~ 0; and 0.1 v E0 v 3 kV cm21 (or
correspondingly 0.001 v e v 0.94). As shown in Fig. 4 (in
which L/h ~ 100 is fixed), N initially increases with E0 until
achieving a maximum (Nmax), and then decreases with E0. In
addition, N is virtually the same at sufficiently low E0 for all b
considered. This is because at low electric fields, JH effects are
negligible, and N is primarily determined by the effect of
longitudinal molecular diffusion, which decreases with E0. As
E0 increases JH effects become increasingly significant and
eventually dominate the dispersion, causing N to decrease. The
value of Nmax varies with b, and is the largest (Nmax # 22800)
for b ~ 1. This is not surprising, as of all rectangular cross
sections, the square shape allows the most efficient heat
dissipation and minimized JH effects. While Nmax generally
decreases with b, it is interesting to note that the decrease is not
monotonic. For example, Nmax for b ~ 8 is slightly higher than
that for b ~ 4. This is because, as the band arrives at the
channel exit (with the channel length fixed), dispersion has

reached steady state in both cross-sectional dimensions for b ~
4, but is still in transient state in the width-wise dimension for
b ~ 8, resulting in a variance smaller than the steady state
variance for a lower aspect ratio.20,26

The effect of the dimensionless channel length L/h on the JH
dispersion is quite straightforward and is shown in Fig. 5 (in
which b ~ 8 is fixed). For the reason explained above, the plate
number N again exhibits a maximum as the electric field E0

increases. Additionally, N increases with L/h. This is expected,
as a longer (or equivalently, shallower) channel leads to a larger
separation of the species and hence increased resolving power.
However, it is important to note that L/h cannot be infinitely
increased to improve the separation performance, as it is not
cost-effective to fabricate microchips with straight channels of
overly large lengths.

5 Joule heating effects in turns

We consider JH-induced dispersion in constant radius-turns in
this section. The relative significance of Joule heating with
respect to diffusion and curvature effects will first be examined.
Then, a parametric analysis of JH dispersion in turns will be
performed, and results from the analytical model and
numerical simulations will also be compared. We will continue
to use the plate number N (eqn. (14) defined for a single turn),
with the residence time tf computed from eqn. (15). We will
focus on turns with Q ~ p and an analyte band that is
unskewed (e.g., Snm(0) ~ 0) before its entry into the turn
although the discussions can be readily extended to initially
skewed bands in turns of different included angles. We
choose D ~ 1 6 1029 m2 s21, r ~ 0.1 S m21, mw ~ 2 6
1028 m2 V21 s21, k ~ 0.6 W m21 K21, a ~ 0.025 K21,
s2(0) ~ 0 mm2 and Snm(0) ~ 0.

First, the influence of JH-induced dispersion on the overall
band broadening behavior is shown in Fig. 6. Here the plate
number N, calculated with and without consideration of JH
effects, is shown as a function of E0 for b ~ 1. The channel is
given a depth h ~ 50 mm and an average radius R ~ 2000 mm.
It can be seen that there exists a critical value of E0 at which N
achieves a maximum (Nmax) regardless of JH effects. However,
while the turn curvature effects cause only a slight decrease of
N from Nmax, the presence of significant Joule heating results in
a rather pronounced drop in N. Thus, at relatively high electric
fields, consideration of Joule heating is crucial for the accuracy
of band broadening modeling. For example, the prediction of
plate number N without considering JH dispersion leads to an
error of 30% at E0 ~ 3 kV cm21 (e ~ 0.94 and Pe ~ 322). As
E0 further increases to 4 kV cm21 (e ~ 1.67 and Pe ~ 423), this
error is quadrupled, growing to 120%.

We now perform a parametric analysis of analyte band

Fig. 3 Comparison of variances computed from the analytical model
(lines) and numerical simulations (symbols) in straight channels.

Fig. 4 Dependence of the plate number N on average electric field E0

in a straight channel with different aspect ratios.

Fig. 5 Dependence of the plate number N on average electric field
E0 in a straight channel with different length-to-depth ratios.
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broadening in the presence of Joule heating. It can be shown
that the effect of channel length (or equivalently, the average
radius R) is very similar to the straight channel case (Fig. 5),
and will not be repeated here. Hence, we will fix R ~ 2000 mm
along with h ~ 50 mm, and consider the influence of varying
average electric field E0 and aspect ratio b, noting that the turn
curvature is now uniquely determined by b through b ~ w/R ~

b(h/R). As shown in Fig. 7, for a given E0 value, N increases
with decreasing b because a more square cross-sectional shape
allows more efficient dissipation of Joule heating. Differing
from the straight channel case, this increase in N is, in addition
to JH effects, also attributable to reduced curvature-induced
velocity non-uniformities in the turn, as smaller b means
smaller turn curvature b. Additionally, it can be seen that when
E0 is sufficiently small (e.g. E0 v 0.03 kV cm21), N increases
virtually linearly with E0 and almost coincides for all b. This is
because at low electric fields, both JH and curvature dispersion
effects are negligibly small compared with longitudinal
diffusion effects, which are independent of b (eqn. (13)).
Thus, eqns. (13), (14) and (15) indicate that the N is
approximately linearly proportional to the Pe number, and
hence the electric field E0. In contrast, N behaves quite
differently at higher electric fields (e.g. 0.03 ¡ E0 ¡ 4 kV cm21).
When b (and hence b) is small (e.g., b ¡ 4) N is determined by
the coupled effects of diffusion, JH and curvature-induced
dispersion, with JH effects playing a more significant role than
the curvature effects at a higher electric field (e.g., E0 ~

3.5 y4 kV cm21), as shown in Fig. 6. N initially increases with
E0 until reaching a maximum (e.g., Nmax ~ 7200 at E0 ~

2.1 kV cm21 for b ~ 1), and then decreases due to JH and
curvature-induced dispersion as E0 further increases. On the
other hand, when b (and hence b) is large, turn curvature-

induced velocity non-uniformities cause more dispersion than
Joule heating. For example, when b ~ 8, curvature effects
account for about 75% of band-broadening under an electric
field of E0 ~ 4 kV cm21. Thus, compared with JH effects,
curvature effects at large b results in a more significant
reduction in the maximum plate number Nmax, as well as the
electric field at which Nmax is achieved.

The plate number N obtained from full numerical simula-
tions is also compared with the analytical modeling results in
Fig. 7. When E0 v 0.5 kV cm21 (e v 0.02), JH dispersion is
negligible. The analytical dispersion model in this case (the 1st,
2nd and 4th terms in eqn. (13)) has been verified elsewhere
experimentally and numerically.22 Thus, the numerical simula-
tions are here performed for 0.5 v E0 v 3 kV cm21 (or 0.02 v

e v 0.94), a practical range in which JH effects can be
significant. It can be seen from the figure that there is good
agreement between the analytical and numerical results. A
worst-case error of 5.5% is observed for b ~ 8 and E ~
3 kV cm21 (Pe ~ 322 and e ~ 0.94), and can be attributed to
the relatively large curvature (b ~ 0.2).

Finally, it is interesting to note that the analytical JH
dispersion model has led to a drastic improvement in
computational efficiency over full numerical simulations. The
numerical simulations presented in Figs. 3 and 7 were
performed, using a domain-wise approach,30 in FEMLAB
3.0a30 on a multi-user, 2-CPU 1-GHz Sun Fire 280 processor
with 4 GB RAM. Computation of a single plate number value
required from 6 h (for small b and E0 values) to four days (for
the relatively large b and E0 values). In contrast, the analytical
model required no more than a second of computation time to
obtain a plate number value, and as such is suitable for use in
simulations of complex electrophoretic separation systems.22

6 Conclusions

We have investigated Joule heating-induced analyte dispersion
in electrophoretic separation microchannels. We considered
non-uniform electrophoretic velocity distributions caused by
Joule heating, and then obtained an analytical model for
analyte dispersion, which is valid in all mass transfer regimes,
and in particular can be used for unsteady dispersion processes
that commonly occur in microchip electrophoresis. The model
is given in terms of analytical expressions and fully para-
meterized with channel dimensions and material properties. It
applies to analyte bands of general initial shape migrating in
straight and constant-radius turn channels, and has been
validated by both numerical simulations and experimental
data. As such, the model can be used to represent analyte
dispersion in microchannels of more general shape, such as
serpentine- or spiral-shaped channels.22

The model has been used to study the effects of several key
parameters on Joule heating-induced dispersion in both
straight channels and turns. In straight channels, the
dependence of the plate number, which characterizes the
resolving power of separation, on electric field, channel’s
length-to-depth ratio and aspect ratio are analyzed. It is found
that a maximum plate number can be achieved when the
combined dispersion due to molecular diffusion and Joule
heating dispersion is minimized. A long (or equivalently,
shallow) channel is preferred for chip design because it
generates less heat or (and) allows higher separation spacing
between species.

Applying the model to a constant-radius-turn microchannel,
we have considered the coupled dispersion effects of Joule
heating and turn geometry. In particular, we investigated the
influence on such a dispersion of the electric field, aspect ratio
and turn curvature. It was shown that when the curvature is
small, both Joule heating and turn curvature effects are

Fig. 6 Comparison of the plate number N computed with and without
consideration of Joule heating, as well as the relative error introduced
without considering JH effects on N.

Fig. 7 The dependence of the plate number N on the average electric
field E0 for varying values of the aspect ratio b of a turn, as computed
from the analytical model (lines) and numerical simulations (symbols).
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important in practically relevant ranges of electric fields. JH
dispersion shows a more significant influence on separation
performance than the curvature at high electric fields, while
curvature-effects, as expected, increase with the turn curvature.
Additionally, JH-induced dispersion, coupled with curvature-
induced dispersion, increases with electric fields and eventually
causes separation performance to deteriorate.

There are two aspects to be addressed in future work. First,
in the current model, channel walls are assumed to be at
uniform temperature. This first approximation considerably
simplifies the formulation of the heat transfer problem in the
model, and is accurate for substrates that are good thermal
conductors or channels that have large aspect ratios. To
improve the accuracy of the model for general substrates and
channel aspect ratios, where there may be significant tempera-
ture variations on channel walls, heat transfer in the substrate
as well as in the buffer will need to be accounted for. This
consideration will also provide a more accurate knowledge of
average buffer temperature, allowing accurate evaluation of
average material properties for use in the model. Such a heat
transfer problem will generally no longer admit an analytical
solution. However, it may still be possible to obtain closed-
form correlations that are fitted to numerical solutions
expressed in appropriate dimensionless parameters.31 The
second aspect of future work concerns applying the Joule
heating model to the design of complex electrophoretic
systems, using the system simulation approach described in
ref. 22 That is, a channel of complex shape can be decomposed
into straight and turn elements, which are each described by the
Joule heating model presented in this paper. These models then
can be linked with the aid of appropriate parameters at
interfaces of neighboring components, to represent the entire
complex channel. This approach can be further extended to
include other functional components such as reservoirs, mixers
and reactors to efficiently simulate the complete electrokinetic
microfluidic systems.
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