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Abstract
We discovered period doubling and chaos in a simulated MEMS cantilever
system with electrostatic sensing and actuation, intended for a MEMS based
mass storage chip, with and without servo control. We used a graphical
interface for a Poincaré map method that allowed us to simulate multiple
initial conditions simultaneously. We investigated both the static and
dynamic instabilities of the MEMS cantilever system subjected to weak and
strong disturbances. We observed bistability and a Hopf bifurcation in the
closed loop controlled cantilever system without disturbances. We simulated
the loop gain and the phase margin when the system was subjected to weak
disturbances. Furthermore, we have found the period doubling, chaos and
strange attractors for both the open and closed loop cantilever systems
subjected to strong disturbances. For one case the stable operation range is
significantly reduced by 25% because of a chaotic response.

1. Introduction

Nonlinearities exist ubiquitously in microelectromechanical
systems (MEMS). Examples include nonlinear spring and
damping mechanisms [1, 2], nonlinear resistive, inductive
and capacitive circuit elements [3, 4] and nonlinear surface,
fluid, electric and magnetic forces [5–8]. In this work, we
investigated nonlinearities in electrostatically actuated MEMS
cantilevers. An open loop MEMS cantilever system with
electrostatic actuation exhibits a snapping instability when the
gap between two charged plates is decreased by one-third of its
initial value. With servo control, this snapping instability can
be made to occur at smaller plate separations, and hence the
cantilever system can have a larger static stability range. Our
work is focused on the stability of electrostatically actuated
MEMS cantilevers both with and without servo control.

In 1890, Poincaré presented his geometrical
interpretations of differential equations and the consequences
of his results for celestial mechanics [9]. The Poincaré map,
which is a stroboscopic view of the phase space, set Poincaré

on the route to the discovery of dynamical chaos. Another
investigation of chaotic behavior was reported in a seminal
paper [10] by Lorenz, who proposed the Lorenz equations to
model atmospheric dynamics and found the Lorenz attractor
and fluid chaos. Chaos in nonlinear systems has become a
major topic of study, and has also appeared in the general
literature: one book on chaos [11] has been on The New York
Times best-seller list.

Modeling, analysis and experimental results related to
the nonlinear dynamic behavior of MEMS devices have
been reported recently [1–8, 12]. Electrostatic and Casimir
interactions can limit the range of positional stability of
electrostatically actuated or capacitively coupled mechanical
devices [7]. This stable range has been experimentally
investigated by Buks and Roukes for a generic system
consisting of a doubly clamped Au suspended beam, which is
capacitively coupled to an adjacent stationary electrode. The
data cannot be accounted for by simple theory; the discrepancy
may be reflective of internal structural instabilities within the
metal electrodes [7]. Global bifurcations involving snapping
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Figure 1. MEMS cantilevers used as tip actuators in a MEMS based probe storage chip.

instabilities of electrostatically actuated MEMS structures
have been analyzed by Lu at Carnegie Mellon [5]. He
addressed the snapping instability phenomenon with parallel-
plate model based servoing, and observed an extended stable
range of more than 67% of the initial gap [5]. Seeger
and Boser used a negative capacitance to extend the stable
range of a gap-closing actuator beyond voltage-controlled
and the charge-controlled limits. They built a parallel-plate
actuator that stably deflects more than 80% of the gap despite
the presence of destabilizing parallel capacitance [13]. A
second design of Seeger and Boser, in agreement with a
two-degree-of-freedom model, was stabilized while tipping
and has achieved a maximum deflection of 1.4 µm or 91%
of the gap using less than 3 V [13]. Periodic and chaotic
oscillations have been observed in an autonomous impact
resonator by Bienstman et al. The experimental results have
addressed such influences as the DC voltage, the charging and
discharging resistors, the air damping, as well as the parasitic
capacitance [4]. Theoretical analysis and experimental results
on the dynamical behavior of a bistable MEMS oscillator
have been published by Wang et al. They verified a model
of a bistable MEMS devise using experimental data and
they demonstrated the existence of a strange attractor in
their MEMS device [6]. In this paper, we studied the
nonlinear dynamics and chaos in a MEMS cantilever control
system, which is based on Lu’s electrostatically actuated
MEMS cantilever system. Compared to the earlier works we
discussed, we investigated the instability, nonlinear dynamics
and chaos in the operating range for both open loop and closed
loop controlled MEMS cantilever systems with snapping
instability.

In our simulations the sources of nonlinearities in the
MEMS cantilever system were the nonlinear electrostatic force
and a separate nonlinear capacitive sensor. The Poincaré map
method [14] was used as a tool for studying the stability of the
cantilever system. Multiple initial conditions were considered
simultaneously in our Poincaré map software. We investigated
both the static and dynamic instability of the MEMS cantilever
systems subjected to weak and strong disturbances. We found
bistability and Hopf bifurcations in the closed loop controlled
cantilever. We kept all the nonlinearities and observed the loop
gain for the nonlinear control system. We used the Nyquist
method to compute the phase margins of the MEMS control

system under small disturbances. We also found significant
chaotic regions in the excitation parameter space, and observed
different strange attractors for both open and closed loop
controls of the cantilever subjected to strong disturbances.
This work is the first description of chaos in a MEMS cantilever
system with an open-loop instability.

2. Background

2.1. Instability of the nonlinear MEMS cantilever

The MEMS cantilevers we modeled will be used in a MEMS
based probe storage chip. As shown in figure 1, two
chips produced with post-CMOS micromachining methods
[5] are bonded together to form a MEMS based non-volatile
magnetic mass storage device. The upper chip contains a
moveable magnetic medium, which is addressed by an array
of cantilevered probes illustrated on the bottom chip. Because
of fabrication tolerances, a 2 to 3 µm gap is expected between
the probe tips and the medium’s surface after assembly. To
read and write small marks, the tips must move to within a
few nanometers of the medium, which in turn will require the
cantilevers to move to within about 200 nm of the surface.
This means that the cantilevers must have controlled actuation
over 90% or so of the initial gap.

Our study is based on a real MEMS cantilever with
dimensions of 4.5 µm × 80 µm × 200 µm [5]. As shown
in figure 2, our MEMS cantilever is modeled as a nonlinear
mass-spring-damper system with external electrostatic
actuation, where mass m = 3.5 × 10−11 kg, spring constant
k = 0.17 N m−1 and the damping coefficient b = 1.78 ×
10−6 kg s−1. The initial gap between the two parallel electrodes
is g = 3 × 10−6 m. The normalized equation of the motion
for the dynamic system is

ẍ + γ · ẋ + x = V 2
n

/
(1 − x)2 (1)

where x = z/g, γ = b/
√

mk, ω0 = √
k/m and τ = ω0t .

Note that ω0 is the cantilever’s natural frequency, τ is the
normalized time and ẋ and ẍ are respectively the first- and
second-order derivatives of x with respect to τ . The right-
hand side of the equation represents the nonlinear electrostatic
actuation force, where Vn = V

√
ε0A/2kg3, and that V denotes

the voltage applied across the electrode gap. The absolute
dielectric constant of vacuum is ε0 = 8.854 × 10−12 F m−l,
and the plate area is A = 1.6 × 10−9 m2.

1065



S Liu et al

Magnetic Media

Cantilevered
Probe

(a)

(b)

Media

εο
z g

m

k b

V

Cantilever

Figure 2. (a) Schematic picture of a MEMS cantilever. (b) The
cantilever system modeled as a nonlinear single mass-spring-damper
system with electrostatic actuation (m = 3.5 × 10−11 kg, k =
0.17 N m−1, b = 1.78 × 10−6 kg s−1 and the initial gap g = 3 µm).

Figure 3. The cantilever system has a minimum energy position and
a maximum energy position when a constant voltage is applied to
the cantilever system. Snapping instability exists in this system.

The MEMS cantilever can be unstable because of the
nonlinearities in electrostatic actuation. As schematically
shown in figure 3, the electrostatic potential energy has a
minimum and a maximum when a constant voltage is applied

Table 1. A Poincaré map is a stroboscopic view of phase space. A simple periodic response corresponds to a single-point attractor as in the
top row. An unstable or chaotic response corresponds to a complex pattern of points, a strange attractor, shown in the bottom row. The
middle row illustrates the phenomenon of period doubling.

to the cantilever system. For a large enough voltage, the
maximum disappears and the system becomes unstable. As
a result, the cantilever plate snaps to the top plate; that is, a
snapping instability occurs.

Stability has different characteristics for linear and
nonlinear systems. For a linear control system, the loop gain,
phase margin and gain margin can be obtained by standard
methods. When the linear control systems are subjected to
both weak and strong disturbances, we can use the linear
theorems such as the loop gain and phase or gain margin
to analyze stability. Linearization is traditionally used to
analyze the stability of the nonlinear systems. However,
some nonlinear behavior cannot be captured by the linearized
systems. By keeping all the nonlinearities, we investigated
both the stability and the nonlinear behavior of the nonlinear
system. The nonlinear system can have multiple static
operating points because of the multiple energy minima.
The phenomena of bistability, multiple stability and Hopf
bifurcation exist in the nonlinear system. Subjected to small
disturbances, the system behaved almost like a linear system,
allowing us to find the loop gain for this nonlinear system.
Moreover, by keeping the nonlinearities in the system, we
can obtain the Nyquist plot and phase or gain margin to
analyze the system’s stability. Under strong disturbances, the
behavior of nonlinear control system can be hysteretic, chaotic
or snapped closed. We used the Poincaré mapping method to
investigate the nonlinear dynamics of the controlled cantilever
under strong disturbances.

2.2. Poincaré maps and strange attractors

A Poincaré map is a sequence of points in phase space
generated by the penetration of a continuous evolution
trajectory through a generalized surface or plane in the space.
For a periodically forced second-order nonlinear oscillator, a
Poincaré map can be obtained by stroboscopically observing
the position and velocity at a particular phase of the forcing
function [14]. The Poincaré map method is an important tool
in nonlinear dynamics, and can be used to distinguish between
different states of motion such as periodic, quasiperiodic or
chaotic orbits. As shown in table 1, a simple periodic response
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Figure 4. Open and closed loop controlled cantilever systems subjected to a disturbance. The inset is the schematic picture of the sensor.

in the linear system corresponds to a single-point attractor in
a Poincaré map. Unstable or chaotic response in the nonlinear
system corresponds to a complex pattern of points—a strange
attractor that refers to the attracting set in phase space on
which the chaotic orbits move. For the MEMS cantilever
system subjected to strong disturbances, we observed such
nonlinearites as the period doubling and chaos. So we used
the Poincaré mapping method to investigate the nonlinear
instability.

3. Open and closed loop controlled cantilever
systems

The open loop cantilever system consists of the controller,
the actuator plate and the sensor plate which is on the same
cantilever as the actuator (figure 4). With a reference input
voltage, an output voltage from the sensor can be obtained
and translated to the displacement of the cantilever. When
the sensor’s output voltage is measured and the discrepancy
between the reference input voltage and sensor’s output voltage
is sent to the controller, the cantilever system is under a closed
loop control.

The actuation voltage applied between the cantilever plate
and media plate is given by V = G(Vref − Vsensor) in the
closed loop system, where G is the controller gain, Vref is the
reference input voltage, and Vsensor = KsVmodCs/(Cc + Cs) is
the sensor’s amplifier output voltage. The sensor capacitance
is Cs = ε0A/(g(1 − x)) − Cs0, where Cs0 = ε0A/g is
the initial sensor capacitance when normalized displacement
x = 0 and Cc is the parasitic capacitance of the closed
loop system. Note that we have subtracted the initial sense
capacitance so that Cs = 0 when x = 0. In addition, Ks and
Vmod are the gain and input of the sensor amplifier, respectively.

We use the following normalized equations for the sensor
in our simulation: {

Vs = Kx/(h − x)

Vn = G(Vr − Vs)
(2)

where Vr = Vref

√
ε0A/2kg3 is the normalized reference input

voltage. Here d = Cc/Cs0 is the ratio of the parasitic
capacitance over the initial sensor capacitance, h = d/(d − 1)

is a parameter affected by the parasitic capacitance and the
initial sensor capacitance, and K = KsVmod

√
ε0A/2kg3

/
(d − 1) is the normalized gain of the sensor amplifier. The
normalized output voltage of the sensor and normalized
voltage sent to the actuator plate are denoted as Vs and
Vn, respectively. The simple sensor model described by
equation (2), which is the same as case 1 in appendix,

has been used in the simulation works on bistability, Hopf
bifurcation, Nyquist plot and phase margin. For the real
cantilever system, which has two sensor plates as shown in Lu’s
MEMS cantilever system (figure 1), the sensed displacements
are the displacement of actuator plate times factor f1 and
factor f2 separately. We use the more realistic model
(case 2 in the appendix) in our other simulation works, such as
snapping, period doubling, chaos and strange attractors. Under
closed loop control (figure 4), the cantilever has a wider stable
displacement range. We investigated the stability of both the
open and closed loop controlled cantilever systems subjected
to disturbances.

To study the nonlinear cantilever system, we developed
a new Matlab-based simulation tool with graphical interface
based on the Poincaré map method. This interface allows
multiple initial conditions to be selected directly on the phase
plane plot on the screen and tracked simultaneously as they
flow toward attractors. A typical use of our Poincaré map
simulation tool is shown in figure 5, where the simulation
begins with a set of 36 initial conditions represented by the
36 dots. In practice, more or fewer initial conditions can
be used depending on design needs. By simulating multiple
trajectories simultaneously and plotting the results as Poincaré
maps (figure 5(b)), we can quickly locate multiple attractors.
Thus, our Poincaré mapping software can be used to study
chaotic vibrations more efficiently and clearly than with other
simulation tools. The nonlinear behavior of this cantilever
system with and without closed-loop control was studied using
this graphical interface and Poincaré mapping with normalized
variables.

The accuracy of the model and the correctness of the
Poincaré map simulation code were verified with experimental
data in the static case. In figure 6, we plotted displacement
versus reference voltage from an experimental cantilever,
our dynamic simulations with full nonlinearity and a static
theoretical calculation. We used parameters measured from
the experimental system operating in the closed loop [5].
Although the experimental data are from a limited range, they
fit our calculations without any adjustable parameters. Thus
we are reasonably confident that our models captured the
effect of nonlinearities in the system. In what follows, the
simulation results in this paper are based on these verified
nonlinear models and program code.

4. Bistability

We first study the static behavior of the closed loop. From
equations (1) and (2) with h = 1, the state space representation
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Figure 5. Nonlinear simulations are simultaneously performed with
multiple initial conditions. For example, displayed in the graphical
interface are (a) 36 initial conditions and (b) the corresponding
Poincaré maps (with a close-up view). (Vr = 0.35, an = 0.3704,
γ = 0.7, � = 1.0, K = 0.083, G = 2.4, r is infinite.)
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Figure 6. Static displacement versus reference voltage curves from
experiment, static theory and dynamical simulation. The
experimental data fits without any adjustable parameters, indicating
that we have reasonable models for the nonlinearities (g = 3.3 µm,
γ = 0.7, h = 1.01, K = 0.083, G = 2.4, r = 10).

of the closed loop controlled cantilever system is given by the
following normalized equations:


ẋ = y

ẏ = −γy − x + G2(Vr−Vs)
2

(1−x)2

V̇s = −r
(
Vs − Kx

1−x

) (3)

where r is the bandwidth of the low pass filter placed after the
sensor in the closed loop system. Note that h = 1 corresponds

0.4
0.3
0.2
0.1

0
-0.1
-0.2
-0.3
-0.4

f

f = GV r  – G(Vr  + K)x

1 2

3

4f =0

f=±  x(1–x)2

0 0.2 0.4 0.6 0.8 1
x
(a)

(b)

√

Figure 7. Four equilibrium positions can be found, which indicates
that the control cantilever system could be bistable. (a) The
graphical solutions of the equilibrium positions: x1 = 0.283, x2 =
0.565, x3 = 0.775, x4 = 0.895, K = 0.06, G = 1.0 and Vr = 0.405.
(b) Schematic picture of the potential energy with four equilibrium
positions.

to Cc � Cs0, which means that the parasitic capacitance is
much larger than the initial sensor capacitance.

The equilibrium state of the system can be obtained by
setting all time derivatives to zero (ẋ = ẏ = V̇s = 0) in the
above equations. From equations (3) we can write the total
force F on the cantilever in the closed loop, normalized, as

F = −x +
G2(Vr(1 − x) − Kx)2

(1 − x)4
(4)

The resulting equilibrium condition is written such that the
total force is zero as

±√
x(1 − x)2 = GVr − G(Vr + K)x. (5)

The solutions of the equilibrium positions are obtained
graphically by plotting the left- and right-hand sides of
equation (5) as functions of x. By varying the system
parameters, we can find up to four equilibrium positions, as
shown in figure 7(a). For example, when K = 0.06, G =
1.0 and Vr = 0.405, the four equilibrium positions are x1 =
0.283, x2 = 0.565, x3 = 0.775, x4 = 0.895. These equilibria
correspond up to two minima and two maxima of the potential
energy in the system, as shown in figure 7(b). In the case that
the cantilever system is bistable, two energy minima exist and
the system can be stable in two positions.

The fact that the closed loop system can be bistable has
been verified by results from dynamic simulation. As shown in
figure 8, the gain has been reduced (G = 1.0, K = 0.06), and the
displacement versus reference voltage has become hysteretic,
indicating bistability in the closed loop. This bistability is
expected from the form of the total force on the cantilever in
the closed loop from equation (4). For G = 1.0, K = 0.06,
and the fact that F has four real zeros, bistability occurs for a
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Figure 8. Bistability of the controlled cantilever system with a
smaller control gain, using dynamic simulation (γ = 0.7, K = 0.06,
G = 1.0, r is infinite.).
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Figure 9. Hopf bifurcation is observed in the MEMS closed loop
controlled cantilever system with the parameters of G = 1.6; K =
0.0835, γ = 0.7, r = 10, Vr = 0.35, disturbance a = 0, initial
condition (0.674, 0, 0.173).

range of x before the cantilever snaps close at x > 0.9. Note
that the singularity at x = 1 is of the fourth order.

5. Hopf bifurcation

As parameters are changed in a nonlinear system, the stability
of the equilibrium points changes as well as the number
of the equilibrium points, which is studied as the subject of
bifurcation theory. A Hopf bifurcation is the emergence of
a limit cycle oscillation from an equilibrium state as some
system parameter is varied [14].

In the nonlinear closed loop controlled cantilever system,
we observed the Hopf bifurcation in the simulation. As shown
in figure 9, when the parameters prescribed are G = 1.6,
K = 0.0835, γ = 0.7, r = 10, the cantilever is at rest
initially with a displacement of x = 0.674 when the input
reference voltage is Vr = 0.34. As an input voltage Vr is
increased to 0.35, the system becomes dynamically unstable.
As the motion amplifies, nonlinearities come into effect and
the motion is bounded within a limit cycle, which represents
the Hopf bifurcation. Furthermore, we investigated the range
of the Hopf bifurcation when the bandwidth of the low pass
filter is changed. The results in figure 10 show that both
the critical input voltage to the range of Hopf bifurcation
and the one to the range of snapping are increased when

Figure 10. The range of Hopf bifurcation is increased when the
bandwidth of the low pass filter is increased (G = 1.6; K = 0.0835,
γ = 0.7, initial condition (0, 0, 0)).

the bandwidth of the low pass filter is increased (G = 1.6;
K = 0.0835, γ = 0.7, initial condition (0, 0, 0)). When
the Hopf bifurcation is observed in the system, the system
will snap with either increasing input voltage or decreasing
bandwidth of the low pass filter. The Hopf bifurcation is
caused by the nonlinearities in the system and is the well-
known scenario for chaotic vibration. In our MEMS cantilever
systems, the Hopf bifurcation is one characteristic precursor
to the snapping. In linear systems there is no limit cycle; thus
snapping has essentially no warning.

6. Instability of the cantilever system subjected
to a small sinusoidal disturbance

In sections 6 and 7, we have investigated the dynamic stability
of the cantilever system subjected to both weak and strong
disturbances. So the state space representation of the closed
loop controlled cantilever system subjected to disturbances is
given by the following normalized equations:



ẋ = y

ẏ = −γy − x + G2(Vr−Vs)
2

(1−x)2 + an cos(�τ)

V̇s = −r
(
Vs − Kx

1−x

) (6)

where, an = a
/(

ω2
0g

)
,� = ω/ω0, a and ω are the disturbance

magnitude and frequency, ω0 is the cantilever’s natural
frequency, τ is the normalized time as in equation (1).

6.1. Loop gain for nonlinear systems

For a closed loop nonlinear control system subjected to a small
displacement or force disturbance, we obtained the loop gain
while keeping the nonlinearities within the system [16].

Although many physical relationships are represented by
linear equations, a careful study of physical systems reveals
that even the so-called ‘linear systems’ are really linear only
in limited operating ranges. Systems may be operated near an
equilibrium point, and the input signals may be considered
as small perturbations to the equilibrium. There are also
exceptions to this common scenario. For some systems such
as an on–off controlled system, nonlinearities are present
for signals of any magnitude [15]. However, for most of
the general systems, which operate in the vicinity of an
equilibrium point for small signals, we can approximate the
nonlinear system by a linear one. Such a linear system is
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Figure 11. The ‘standard’ nonlinear control system configuration
consists of a linear dynamic plant having the transfer function G(s)
and a nonlinear element.

an approximation to the nonlinear system considered within a
limited operating range.

The ‘standard’ nonlinear control system configuration
consists of a linear dynamic plant having the transfer function
G(s) and a nonlinear element as shown in figure 11 [17]. The
nonlinear characteristic is designated by

u = φ(e). (7)

We considered the standard nonlinear control system in
figure 11, where the nonlinear element takes the form of a
variable gain. For some values of the variable gain, the gain
margin or phase margin will go to zero and the system will
oscillate.

In our simulation, we kept all the nonlinearities in the
nonlinear system. We injected a small sinusoidal disturbance
as an input to the closed loop nonlinear systems and traced
the path of the signal around the loop. Keeping all the
nonlinearities and the loop closed, we defined the open loop
gain as

Loop gain = lim
input→0

�w

�e
. (8)

As shown in figure 12, we injected a small sinusoidal
displacement or force disturbance into the closed loop
controlled cantilever system to obtain the loop gain. Because
the displacement disturbance and the force disturbance are in
the same branch of the closed loop system, the same loop gain
is obtained (figure 13).

6.2. Nyquist plot and phase margin

To investigate the dynamic stability, the cantilever system
is subjected only to a small sinusoidal force disturbance
(figure 12), with magnitude (an) much less than the magnitude
of the electrostatic force. Using our simulation on the
closed loop controlled cantilever system with equation (8),
we obtained the open loop gain of the system subjected to a
force disturbance in the loop. When the normalized bandwidth
of the low pass filter (r) is 10, the Nyquist plot of the loop gain
is shown in figure 13.

Force
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V V

V Kx/(h – x)

F
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n n

n

2 +
+

(1– X )2

a cos (Ωt) na cos (Ωt)

.. .
γ

s =

Displacement
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x +
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Figure 12. Diagram of the closed loop controlled cantilever system subjected to different disturbances.
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Figure 13. Nyquist plot of the loop gains measured from a force
disturbance in the controlled cantilever system when the normalized
bandwidth of the low fast filter is 10 (r = 10, x = 0.64, γ = 0.7, K =
0.083, G = 2.4, an = 0.001).

Figure 14. Phase margin obtained from the loop gains in the
controlled cantilever system (x = 0.64, γ = 0.7, K = 0.083, G =
2.4, an = 0.001).

From the Nyquist plot, we calculated the phase margin
(figure 14). The phase margin approaches zero as the
bandwidth of the low pass filter decreases. The cantilever
system becomes unstable when the phase margin is negative.
Therefore, for very small disturbances, the Nyquist criteria are
still valid, and the controlled cantilever system will be stable
with enough bandwidth in the control loop. However, large
disturbances will push the system out of the linear regime, and
the Nyquist stability criteria no longer apply and a nonlinear
analysis method, such as Poincaré mapping, is needed.

7. Instability of the cantilever system subjected
to a strong sinusoidal disturbance

7.1. Snapping with strong disturbances

The system is subjected to a sinusoidal disturbance with input
frequency prescribed as the same as the cantilever’s natural
frequency and with magnitudes (an) slowly increased from
zero to a value large enough to generate a nonlinear response.
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Snapping occurs as an reaches a critical value anc, which is
plotted as a function of the reference voltage Vr in figure 15
for both the open and closed loop systems. It can be seen
that anc decreases with increasing Vr for the open loop system,
and is nearly constant under closed loop control. For the
open loop system, when the reference voltage Vr is increased,
the position of the cantilever is close to the snapping point.
So the magnitude of the disturbance which the system can
resist is decreased. The closed loop controlled system, on the
other hand, has a high immunity to the disturbances for high
reference voltage Vr. Compared with the open loop system,
the closed loop controlled system can achieve a wider stable
operating range and is less sensitive to higher disturbances at
the operating points for large displacements.

7.2. Period doubling, chaos and strange attractors

In our nonlinear MEMS cantilever dynamical system, there
are some characteristic precursors to the snapping, such as the
period doubling and chaos. In conducting any of these tests
for period doubling phenomenon or chaotic vibrations, we
varied one or more of the control parameters in the system. In
our simulation, we varied the amplitude of the disturbance.
We further used Poincaré mapping to explore Vr and an

values corresponding to the circles A and B in figure 15.
Interestingly, period doubling and chaos are observed with
disturbance amplitudes that are smaller than anc. For both
open and closed loop systems, the chaotic range of an values
can be significant (as large as 25% of anc), as shown as a
function of Vr in figures 16 and 17. From these results, we
know that the nonlinear MEMS cantilever system is not always
stable before snapping. The behavior of period doubling and
chaos, which can be significant and not explored by linearized
systems, exists for some range of the parameter space. In some
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Figure 17. Chaos range of disturbance amplitude for the closed
loop system at different reference voltages (region B in figure 15).

Figure 18. Phenomena of period doubling by normalizing to the
period 2 transition are apparent for cantilever systems with different
damping ratios. The nonlinear cantilever system with a smaller
damping ratio is more unstable and has a larger area of period
doubling and chaos (� = 1.0, K = 0.083, G = 2.4, r is infinite).

Figure 19. A strange attractor which occupies a small region of
phase space has been found more easily than alternative methods in
the closed loop system with Vr = 0.48, an = 0.3502, γ = 0.7, � =
1.0, K = 0.083, G = 2.4, and r is infinite.

applications, such as our cantilever system, we want to avoid
these unstable ranges.

Furthermore, we investigated period doubling of the
cantilever system with a different damping ratio in our
simulation. As shown in figure 18, period doubling ranges
by normalizing to the period doubling range of period 2,
transitions are apparent for cantilever systems with different
damping ratios. The results show that the nonlinear cantilever
system with a smaller damping ratio is more unstable and has
a larger area of period doubling and chaos.

There are many different strange attractors within the
chaotic area, depending on the disturbance amplitude.
Figure 19 shows a strange attractor (as observed in figure 15,
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Table 2. Sensor models used in our simulation work.

Sensor Equations of capacitor sensor Normalized equations Used in

Case 1




Cs = ε0A/(g(1 − x)) − Cs0

Vsensor = KsVmodCs/(Cc + Cs)
V = G(Vref − Vsensor)

{
Vs = Kx/(h − x)
Vn = G(Vr − Vs)




Bistability
Hopf bifurcation
Nyquist plot, phase margin

Case 2




Cs1 = ε0A/(g(1 − 123x/183)) − Cs0
Cs2 = ε0A/(g(1 − 153x/183)) − Cs0
Cs = Cs1 − Cs2

Vsensor = KsVmodCs/(Cc + Cs)
V = G(Vref − Vsensor)




Cs1 = ε0A/(g(1 − 123x/183)) − Cs0
Cs2 = ε0A/(g(1 − 153x/183)) − Cs0
Cs = Cs1 − Cs2

Vsensor = KsVmodCs/(Cc + Cs)

Vn = G(Vr − Vsensor

√
ε0A/2kg3)




Snapping
Period doubling
Chaos and strange attractor

Cs0 = ε0A/g, Vr = Vref

√
ε0A/2kg3, h = d/(d − 1) ≈ 1, d = Cc/Cs0

K = KsVmod

√
ε0A/2kg3/(d − 1), Cc is the parasitic capacitance

Figure 20. Another strange attractor of chaos which occupies a
notably larger range of the phase space has been observed for the
controlled cantilever system with Vr = 0.35, an = 0.3704, γ =
0.697, � = 1.0, K = 0.083, G = 2.4, and r is infinite.

region B), which occupies a small region of phase space, and so
would be difficult to find by alternative methods. In figure 20,
another strange attractor that we observed in the closed loop
system occupies a much wider region of the phase space. By
observing the strange attractors in the Poincaré map, we know
that the system is in chaotic vibration. In the parameter space,
different initial conditions for the nonlinear dynamical system
will cause different vibrations, such as the stable periodic
motions or chaotic motions. Our graphical interface with
the Poincaré map method allows multiple initial conditions
to be selected directly on the phase plane plot on the screen.
Multiple trajectories can be simulated simultaneously; thus,
chaotic vibrations and multiple strange attractors can be found
more easily than with other simulation tools.

8. Conclusions

We have developed and used simulation methods to investigate
both the static and dynamic instability of the MEMS cantilever
system subjected to weak and strong disturbances. We have
verified bistability in the closed loop controlled cantilever
system in both theoretical analyses and our simulation with
full nonlinearities. We have observed the Hopf bifurcation, a
characteristic precursor to the snapping, in the closed loop
controlled cantilever system applied with reference input
voltage without any disturbance. We have analyzed the
loop gain and phase margin for nonlinear control systems.
The Nyquist criteria are shown to be valid for the MEMS
control system under small disturbances, which can be stable

with high enough bandwidth in the feedback loop. For an
electrostatically actuated MEMS cantilever subjected to strong
disturbances, we used the Poincaré map with a graphical
interface for selecting multiple initial conditions. We were
able to easily find significant chaos in the response of realistic
models. For the nonlinear MEMS cantilever system, we have
observed period doubling, chaos and strange attractors for
both the open loop system and the closed loop system. For
one case the stable operation range of the closed loop system
is significantly reduced by 25% because of a chaotic response.

Our future work will include research on reducing the
order of the closed loop force polynomial, which would
eliminate the bistable behavior, and improve overall stability
as the gap approaches zero. A potential alternative pull-away
design will be investigated to reduce the order of singularity
at x = 1.
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Appendix

Two different sensor models are used in our simulation work
(table 2). (1) Case 1 is the simple model in which the sensor
displacement is the same as the displacement of actuator plate.
The simple sensor model has been used in the simulation
works on bistability, Hopf bifurcation, Nyquist plot and phase
margin. (2) For the real cantilever system, which has two
sensor plates as Lu’s MEMS cantilever system (figure 1), the
sensed displacements are the displacement of actuator plate
times f1 and f2 separately. We use this more realistic model
(case 2) in our other simulation works, such as snapping, period
doubling, chaos and strange attractors.
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