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A Parametrized Three-Dimensional Model for
MEMS Thermal Shear-Stress Sensors

Qiao Lin, Yong Xu, Fukang Jiang, Yu-Chong Tai, Member, IEEE, and Chih-Ming Ho, Member, IEEE

Abstract—This paper presents an accurate and efficient model
of MEMS thermal shear-stress sensors featuring a thin-film
hotwire on a vacuum-isolated dielectric diaphragm. We consider
three-dimensional (3-D) heat transfer in sensors operating in
constant-temperature mode, and describe sensor response with a
functional relationship between dimensionless forms of hotwire
power and shear stress. This relationship is parametrized by
the diaphragm aspect ratio and two additional dimensionless
parameters that represent heat conduction in the hotwire and di-
aphragm. Closed-form correlations are obtained to represent this
relationship, yielding a MEMS sensor model that is highly efficient
while retaining the accuracy of three-dimensional heat transfer
analysis. The model is compared with experimental data, and the
agreement in the total and net hotwire power, the latter being a
small second-order quantity induced by the applied shear stress,
is respectively within 0.5% and 11% when uncertainties in sensor
geometry and material properties are taken into account. The
model is then used to elucidate thermal boundary layer charac-
teristics for MEMS sensors, and in particular, quantitatively show
that the relatively thick thermal boundary layer renders classical
shear-stress sensor theory invalid for MEMS sensors operating
in air. The model is also used to systematically study the effects
of geometry and material properties on MEMS sensor behavior,
yielding insights useful as practical design guidelines. [1302]

I. INTRODUCTION

WHEN a fluid flows over a solid surface, viscous ef-
fects generate shear stress, or skin friction, on the

surface. Knowledge of such wall shear stress is essential for
understanding the dynamics of the fluid flow, and its measure-
ment holds great importance for investigating and controlling
wall-bound turbulence and flow separation [1]–[5]. Miniatur-
ized shear-stress sensors fabricated using MEMS technology
offer superior spatial resolution, minimized interference with
fluid flow, and fast time response [6]. MEMS shear-stress
sensors can be based on direct methods, typically using micro-
machined force-sensitive floating elements (e.g., [7], [8]) or
indirect methods that primarily exploit thermal effects.

MEMS thermal shear-stress sensors are based on measure-
ment of heat transfer from a heated thin-film element to the fluid
flow. Since their initial demonstration [9], [10], much progress
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has been made in further development of MEMS thermal
sensors for shear stress measurements. This includes sensors
with alternative sensing element configurations and materials
[11]–[15], and investigations of sensor characteristics such as
thermal insulation, frequency response, pressure sensitivity and
noise floor spectra [16]–[18]. In addition, MEMS shear-stress
sensors have been fabricated in arrays on rigid [19] and flexible
substrates [20], [21], integrated with signal conditioning cir-
cuitry [15], [20], [21], and applied to flow sensing and control
in both air [22] and water [23]. Recently, there have also been
numerical simulations of MEMS thermal shear-stress sensors
to study effects of natural convection on fluid velocity profile
[24] and effects of heat conduction in the sensor substrate on
frequency response [25].

While these developments have been successful, a thorough
understanding of the MEMS sensor operation has been lacking.
In particular, it has been experimentally observed that the be-
havior of miniaturized shear-stress sensors often disagrees with
classical shear-stress sensor theory, which states that the heat
removed by the flow is proportional to the 1/3-power of the
shear stress [15]. We have performed systematic wind-tunnel
testing of MEMS shear-stress sensors to study this issue, and
interpreted the resulting experimental data qualitatively with a
two-dimensional model [26]. While three-dimensional simula-
tions were also performed, the numerical results were limited
to the specific sensors tested and were not reusable if any ma-
terial or geometric properties are varied from the values used
in the simulations. To address the need for efficient and ac-
curate evaluation of candidate sensor designs in iterative de-
sign processes, this paper presents a parametrized, three-dimen-
sional (3-D) model, which is represented by closed-form ex-
pressions, for hotwire-based MEMS shear-stress sensors op-
erating in constant-temperature mode. The model is validated
with experimental data, and used to provide quantitative eluci-
dation that the invalidity of classical shear-stress sensor theory
for MEMS sensors is caused by the relatively large thickness of
the thermal boundary layer on the sensor surface. Based on the
model, the effects of sensor geometry and material properties
on shear-stress sensing behavior are also systematically investi-
gated.

The paper is organized as follows. The MEMS sensor config-
uration is described in Section II, and parametrized heat transfer
equations are presented in Section III. The resulting model is ex-
perimentally validated in Section IV, and then used to elucidate
thermal boundary layer characteristics and examine classical
theory in Section V. Sections VI and VII, respectively, present a
systematic study of the effects of sensor geometry and material
properties on sensor behavior at zero and nonzero shear stress.
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Fig. 1. (a) Schematic and (b) micrograph of a MEMS thermal shear-stress sensor.

Fig. 2. Illustration of the MEMS thermal shear-stress sensor model. Only
one-half of the model is shown due to symmetry of the sensor about the XZ
plane.

A closed-form representation of the model is presented in Sec-
tion VIII, and the conclusions from this work are finally given
in Section IX.

II. SENSOR CONFIGURATION

We focus on a widely used class of MEMS shear-stress sen-
sors that feature a resistive hotwire on a vacuum-isolated di-
aphragm [9], [10], [14], [19]–[21], [23]. A schematic and a mi-
crograph of such sensors are shown in Fig. 1. The sensor con-
sists of a resistive thin-film wire on a diaphragm, which in turn
is suspended from the bulk of the substrate by a vacuum cavity.
Aluminum metallization provides electrical connection to the
resistor, which is electrically heated to function as a hotwire,
with the vacuum providing enhanced thermal isolation. To mea-
sure wall shear stress, the sensor is mounted with the diaphragm
surface flush with the wall and the hotwire perpendicular to the
flow. In constant-temperature mode, the hotwire temperature is
maintained constant, and the power consumed in the hotwire is
measured to determine the shear stress.

III. PARAMETRIZED MEMS SENSOR MODEL

This section describes parametrized heat transfer equations
for MEMS thermal shear-stress sensors. We focus on the sensor
configuration described above; however, the modeling method-
ology is generally applicable to sensors with other configura-
tions (e.g., [12], [15]). As illustrated in Fig. 2, the model con-
siders a fluid flow over a vacuum-isolated thin diaphragm of
length , width , and thickness (with and ).

A hotwire is embedded in the diaphragm along the diaphragm’s
plane of symmetry that is perpendicular to the flow, and spans
the entire diaphragm width . The hotwire has cross-sectional
area , with width . As shown in the figure, we choose
a coordinate frame with its origin at the center of the diaphragm
surface, and its X and Y axes, respectively, aligned with the flow
and hotwire.

A thermal boundary layer arises from hotwire heating on the
sensor surface. This is a spatial region in which the fluid tem-
perature rises above the ambient temperature (i.e., the temper-
ature of the undisturbed bulk fluid). Because of the miniature
MEMS sensor size, we adopt the assumption, which is generally
made for conventional shear-stress sensors [1]–[3], that the en-
tire thermal boundary layer is contained in the viscous sublayer
of the velocity boundary layer. Therefore, the fluid velocity, ,
and shear stress, , which may vary with time (as in a turbu-
lent flow), are related by a linear relationship in which is the
fluid’s dynamic viscosity [3]

(1)

We consider heat transfer in the fluid, hotwire and diaphragm,
whose temperatures are respectively , and . Define di-
mensionless temperatures by

(2)
and dimensionless shear stress and power by

(3)

where is the power required to maintain the average hotwire
temperature at a constant:

. Also define the dimensionless thermal conductivities of
the hotwire and diaphragm, and , and the diaphragm as-
pect ratio (AR) by

(4)

where and are the fluid’s thermal conductivity and dif-
fusivity, and and are the thermal conductivities of the
hotwire and diaphragm.

Authorized licensed use limited to: Columbia University. Downloaded on October 12, 2009 at 16:18 from IEEE Xplore.  Restrictions apply. 



LIN et al.: A PARAMETRIZED THREE-DIMENSIONAL MODEL FOR MEMS THERMAL SHEAR-STRESS SENSORS 627

To obtain heat transfer governing equations, assume that spa-
tial distributions of and , are one- and two-dimensional,
respectively. For simplicity, all thermal properties are assumed
to be independent of temperature. Also, if the flow is time-
varying, such variations are assumed to be sufficiently slow to
allow use of steady-state heat transfer theory. Then, with dimen-
sionless variables , and , heat con-
duction in the hotwire is governed by

(5)

where the heat loss directly from the hotwire to the fluid has
been ignored using the approximation (further discussed in Sec-
tion IV) of a vanishingly small hotwire width with the hotwire
cross-sectional area kept constant. Heat conduction in the di-
aphragm is governed by

if
if otherwise

(6)

where denotes the diaphragm’s edges. Finally, forced con-
vection in the fluid is described by

if
otherwise

(7)

The boundary conditions in these equations assume that the
substrate is an ideal heat sink at ambient temperature, as silicon
is an excellent thermal conductor. This is supported by our mea-
surements of substrate temperature immediately adjacent to the
diaphragm and hotwire, which did not exceed 1 above am-
bient. The effects of heat radiation and natural convection have
also been neglected in these equations as they are considered
insignificant [26].

A model for the MEMS thermal shear-stress sensors, given
by the functional relationship , is thus obtained by
numerically solving (5)–(7) using the ABAQUS finite element
package. It will be convenient to further decompose in the
form

(8)

where is the dimensionless hotwire power in still
fluid (i.e., ), and is the dimensionless
net hotwire power that is exclusively induced by nonzero shear
stress.

IV. EXPERIMENTAL VALIDATION

In this section we validate the model with wind-tunnel exper-
imental data obtained from three MEMS shear-stress sensors

[see Fig. 1(b)]. Details of the experiment are given elsewhere
[26]. These sensors, referred to as Sensors 1, 2, and 3, each had
a polysilicon hotwire 150- long and 0.5- thick, and a sil-
icon-nitride diaphragm with dimensions in the
chip plane. The hotwire width and diaphragm thickness were
3 and 1.5 (Sensor 1), 7 and 1.5 (Sensor 2), and 7 and
3.0 (Sensor 3), respectively. Operating in constant-tempera-
ture mode at and , the sensors respec-
tively consumed 5.08, 5.40, and 11.25 mW of power in still air,
corresponding to a dimensionless still-air hotwire power
of 6.74, 9.30, and 19.4 (with thermal properties of air evaluated
at given below). The maximum shear stress measured in
the experiment was 1.04 Pa, corresponding to a dimensionless
shear-stress of 17.4 (Sensor 1) and 19.1 (Sensors 2 and 3).
With this correspondence between dimensional and dimension-
less quantities for the sensors tested, we will exclusively use
dimensionless shear stress and power in the remainder of this
paper.

To evaluate the dimensionless parameters for the sensors
tested, thermal properties of air are evaluated at the average
temperature (with

) from published data [27], and the thermal con-
ductivities of polysilicon and silicon nitride are given nominal
values and , respectively.
The parameters ( , , AR) are calculated to be (0.194, 1.50,
1), (0.467, 1.54, 1), and (0.570, 3.09, 1) for Sensors 1, 2, and
3, respectively. Based on these nominal parameter values, the
dimensionless hotwire power calculated from the model has
an error of 16%, 4.4%, and 20% for the three sensors when
compared with experimental data, while the calculated dimen-
sionless net hotwire power deviates from the experimental
data by 28%, 37% and 35% for the three sensors.

These errors can be attributed to several nonidealities not con-
sidered in the model. The first factor is the uncertainty in mate-
rial and geometric properties. In particular, the thermal conduc-
tivities of LPCVD polysilicon and silicon nitride are process-de-
pendent, and their values reported in different sources differ by
more than 100% [28]–[31]. Chip-to-chip variations in thick-
nesses of such thin films are on the order of 20%. From (4),
the uncertainty in the dimensionless conductivities and
is of the same order. Additionally, as the hotwire does not span
the entire diaphragm as assumed (see Fig. 1), the effective as-
pect ratio is expected to lie between 1 (the nominal value) and

(the ratio of hotwire to diaphragm lengths).
There are also other unmodeled effects such as temperature de-
pendence of material properties, and natural convection and ra-
diation effects [26].

Modeling error can also be caused by the neglect of heat
transfer directly from hotwire to air. This is based on the as-
sumption that when the total diaphragm length , hotwire
cross-sectional area and hotwire temperature are
held constant, the combined heat loss directly from the
diaphragm and hotwire surfaces to air is insensitive to hotwire
width . Thus, can be made vanishingly small and
dropped from consideration, reducing by one the number of in-
dependent parameters in the model. We examine this assump-
tion using Sensor 2 as an example. With ranging from 0 to 20,

changes only by less than 3.4% as is decreased by two
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Fig. 3. Comparison of model-predicted and experimentally determined
dimensionless net hotwire power �p = p� p as a function of dimensionless
shear-stress � . For Sensors 1, 2, and 3, p = 6:74, 9.30 and 19.4 from the
experiment, and p = 6:73, 9:31, and 19:4 from the model.

orders of magnitude from 7 (the actual value) to a theoret-
ical value of 0.07 (or ). The corresponding
changes in and are respectively less than 1.2% and 6.2%.
That is, the effect of finite hotwire width is negligible on , and
small on .

The uncertainty above can be approximately reflected in
model predictions by adjusting the parameters , and AR
from their nominal values. To this end the sensitivity of sensor
response to these parameters is first evaluated. Sensor 2 is
used as an example, and the other sensors yield similar results.
For and at , the
sensitivity1 of the total hotwire power is found to range from
0.16 to 0.17 with respect to , from 0.68 to 0.70 with respect
to , and from 0.86 to 0.81 with respect to AR. That is, all
three parameters significantly influence . On the other hand,
the corresponding sensitivity of the dimensionless net hotwire
power ranges from 0.013 to 0.017 with respect to and
from 0.048 to 0.070 with respect to , but lies between 0.93
and 1.4 with respect to AR. Thus, for these sensors, is sen-
sitive to changes in AR, but not to changes in the dimensionless
conductivities.

Therefore, in parameter adjustment, we first adjust AR to re-
duce modeling error in , and then and to reduce mod-
eling error in . The resulting adjusted values for
are (0.140, 1.09, 0.863), (0.400, 1.28, 0.804) and (0.600, 3.27,
0.825) for Sensors 1, 2, and 3, respectively. These adjustments
are consistent with the parameter uncertainty discussed above.
The total hotwire power thus predicted agrees with the exper-
imental data within 0.4% at all measured shear stresses. Dis-
crepancies between the model-predicted net hotwire power
and experimental data is also reduced, for all tested sensors, to
11% or less for , when forced convection is sufficiently
significant (see Fig. 3). This error, while larger than that for

, is considered acceptable as represents second-order heat

1The sensitivity of a quantity q with respect to some parameter s is defined
as (@q=@s)=(q=s), which gives the relative change of q produced by a given
relative change of s.

transfer effects and accounts for only about 3% or less of the
total hotwire power. More accurate modeling of the nonideali-
ties above should further reduce the error.

Finally, Fig. 3 affords an interesting insight into the three sen-
sors tested, which had different hotwire cross-sectional dimen-
sions and diaphragm thicknesses, and operated at different tem-
peratures. The relations between and for these sensors,
both from the model and experiment, almost collapse to a single
curve. Thus, the model indeed captures the trend in the exper-
imental data. In particular, as the sensors had the same AR but
different and values, we observe that for these sensors,
AR plays a major role in determining , while and do
not. This observation is consistent with the sensitivity analysis
above, and as will be shown in Section VII, reflects the general
insensitivity of to and the saturated dependence of
on .

V. THERMAL BOUNDARY LAYER CHARACTERISTICS AND

INADEQUACY OF CLASSICAL THEORY

In classical theory, the sensor is assumed to be a constant-tem-
perature flat plate with an infinite spanwise dimension, and the
thermal boundary layer is assumed to be thin compared with
the plate length [3]. Heat transfer in the fluid is then domi-
nated by forced convection and conduction across the boundary
layer. Other heat conduction contributions are ignored. Applied
to MEMS shear-stress sensors, the plate length is taken to be
the diaphragm length . In the dimensionless parameters
defined in (3) and (8), this yields , i.e., the
net hotwire power is proportional to the 1/3-power of the shear
stress.

This classical relationship has been used for MEMS shear-
stress sensors due to a lack of a micro sensor model [13], [15],
[18], [19]. It is important, however, to note that this law is valid
only if the thermal boundary layer is thin; that is, , where

is the maximum thermal boundary layer thickness over the
heated plate. As [3], this requirement trans-
lates into . Applied to (MEMS or conventional) hot-film
sensors that are used in air flow, the diaphragm half-length must
satisfy the condition

(9)

where has the unit of Pa, and thermal properties of air are
representatively evaluated at 75 .

It can be seen that this condition is generally not satisfied
by MEMS thermal shear-stress sensors, with on the order
of hundreds of microns or less, for air flow measurements that
typically involve shear stresses on the order of 1 Pa. In partic-
ular, the sensors tested in our experiment vi-
olate this requirement. The experimental data (Fig. 3) indeed
deviates significantly from the classical power law, and instead
is described approximately by . This is correctly
predicted by the three-dimensional model, which approximately
gives for for all three sensors tested.
The 0.79-power law agrees with the experimental data more
closely than the 0.67-power law as predicted by a more sim-
plified, two-dimensional (2-D) analysis [26].
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Fig. 4. Edge of the thermal boundary layer (on which � = 0:01) for Sensor
2 at different shear-stress values plotted in dimensionless spatial coordinates.
The diaphragm spans the interval [�1 1] on the x-axis.

Fig. 5. Second-order partial derivatives of the fluid temperature along the
z-axis (� = 20 for Sensor 2).

The MEMS shear-stress sensor model allows quantitative
insight into the characteristics of the thermal boundary layer.
We consider Sensor 2 with the nominal parameter values

. The edge of the thermal
boundary layer, at which the temperature has decreased to
1% of the average hotwire temperature, is computed from
the model and shown in Fig. 4 for and . It
can be seen that the thermal boundary layer is not thin, with
a thickness comparable to the diaphragm length for all these
shear-stress values.

Also, streamwise heat conduction in the fluid, which is
ignored in classical theory, can be considered to gain insight
into the boundary layer. Again using Sensor 2 as an example,
Fig. 5 shows second-order partial derivatives of fluid temper-
ature , which represent heat conduction in three
dimensions, along the z-axis (Fig. 2). We can see that
is comparable in magnitude with , indicating that
streamwise heat conduction is as significant as heat conduction
across the thermal boundary layer, and hence cannot be ignored.

Fig. 6. Dependence of the dimensionless still-fluid hotwire power p on the
dimensionless hotwire conductivity � for different ARs (� = 1:5).

VI. SENSOR RESPONSE IN STILL FLUID

The parametrized model allows us to systematically study the
effects of the parameters , and AR on sensor behavior.
This section considers such effects on the still-fluid hotwire
power , and the next section will consider the net hotwire
power . We compute by numerically solving (5)–(7)
with , with the three parameters varied from the reference
values , and , which approximately
represents Sensor 2.

Fig. 6 depicts the dependence of on the dimensionless
hotwire conductivity as AR is varied. It can be seen that

increases virtually linearly in the entire range of , and de-
creases with AR at fixed . In addition, the slope
decreases as AR increases, until becomes virtually indepen-
dent of . This effect of AR agrees with the intuition that the
conduction heat loss to the substrate at the hotwire ends and
streamwise diaphragm edges decreases with AR and becomes
diminished at sufficiently large AR, when the sensor behavior
becomes 2-D. It is also intuitively clear that increases with

, as higher hotwire conductivity leads to greater power con-
sumption. To explain the nearly linear relationship between
and , Fig. 7 shows the temperature distributions along the
hotwire and the streamwise centerline of the diaphragm. As
varies by two orders of magnitude from 0.05 to 0.5, and

change only by less than 15% with respect to the average
hotwire temperature. As the hotwire and diaphragm tempera-
tures are insensitive to , (5) indicates that will be approx-
imately linear in .

The effect of the dimensionless diaphragm conductivity on
the still-air power is shown in Fig. 8. First note that for fixed

, again decreases with AR. For a given AR, increases
with , as there is more heat loss to the substrate through a
diaphragm of higher conductivity. It can also be seen in Fig. 8
that while increases nonlinearly with when is small,
the dependence becomes almost linear when is sufficiently
large (approximately ; also see Section VIII). This is
because for sufficiently large , there is significant heat con-
duction in the diaphragm. The temperature distributions in the

Authorized licensed use limited to: Columbia University. Downloaded on October 12, 2009 at 16:18 from IEEE Xplore.  Restrictions apply. 



630 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 3, JUNE 2005

Fig. 7. Normalized temperature distributions along the hotwire and
streamwise centerline of the diaphragm for different values of the dimensionless
hotwire conductivity � (� = 1:5;AR = 1).

Fig. 8. Dependence of the dimensionless still-fluid hotwire power p on the
dimensionless diaphragm conductivity � for different ARs (� = 0:5).

hotwire and diaphragm in this case become insensitive to the
specific value of , in a manner similar to that illustrated in
Fig. 7. Such insensitivity then implies, again according to (5),
that is approximately linear in .

VII. SENSOR RESPONSE TO SHEAR STRESS

We consider , the dimensionless net hotwire power in-
duced by applied shear-stress, as a function of the dimensionless
shear stress . This function in general depends on , , and
AR, which will now be varied one at a time from the reference
values , and . Note that when these
parameters are fixed, always increases with as a result of
increased convection heat transfer rates (see Figs. 9, 11, and 12).

First consider the influence of the dimensionless hotwire con-
ductivity . Fig. 9 shows the functional relationship as

is varied from 0.05 to 0.5 while and
are fixed. We see that is not significantly affected by ,
changing only by about 6% for up to 24. This agrees with
the observation that relations between and are virtually

Fig. 9. Dimensionless shear-induced hotwire power �p as a function of the
dimensionless shear stress � for different values of the dimensionless hotwire
conductivity � (� = 1:5;AR = 1).

Fig. 10. Boundary of the effective heated region on the diaphragm at � =
20 for different values of the dimensionless hotwire conductivity � (� =
1:5;AR = 1). The bounded region consists of points at which � > 0:5.

the same in the experimental data (Fig. 3) even though is
larger for Sensors 2 and 3 than for Sensor 1. To explain the
weak dependence of on , we consider the effective heated
region, the diaphragm region where the temperature is signifi-
cantly higher than room temperature (using for con-
creteness). As depicted in Fig. 10 for and different

values, the boundary of this region does not vary signifi-
cantly with , as the sensor is in constant-temperature opera-
tion. Thus, heat loss from the diaphragm to the fluid, and hence

, is not significantly affected by .
To study the effect of the dimensionless diaphragm conduc-

tivity , the functional relationship is plotted in Fig. 11
with varying from 0.05 to 5 while and
are fixed. At a given , increases with , as higher di-
aphragm conductivities allow for a larger effective heated region
and hence increased forced convection rates. However, the heat
transfer rate quickly becomes saturated when is sufficiently
large (approximately ). For example, only changes
by less than 20% as varies from 0.5 to 5, and by less than
7.8% as varies from 1 to 3.5. This is again consistent with
the experimental data, which gives nearly identical relations be-
tween and (see Fig. 3) for ranging from 1.09 to 3.27.
This is because the effective heated region on the diaphragm,
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Fig. 11. Dimensionless shear-induced hotwire power �p as a function of the
dimensionless shear stress � for different values of the dimensionless diaphragm
conductivity � (� = 0:5;AR = 1).

Fig. 12. Dimensionless shear-induced hotwire power �p as a function of the
dimensionless shear stress � for different values of the aspect ratio AR (� =
0:5; � = 1:5).

in a manner similar to Fig. 10, is not sensitive to sufficiently
large . As increases, the temperature distribution on the di-
aphragm ultimately approaches an asymptote. Thus, , which
is primarily due to heat transfer from the diaphragm surface to
the fluid, no longer changes with significantly.

Finally, consider the effect of the diaphragm aspect ratio AR.
Fig. 12 shows as a function of with AR varying from 0.5
to 8, and and . It can be seen that the de-
pendence of on is relatively linear at small AR, and be-
comes increasingly nonlinear as AR increases. For a fixed ,
also increases with AR and eventually approaches an asymptotic
value. To understand this trend, we note that the diaphragm’s ef-
fective heated region initially increases with AR in both stream-
wise and spanwise dimensions, leading to more efficient con-
vection and increased . As AR further increases, the growth

of the heated region’s streamwise dimension becomes saturated,
while the heated region’s spanwise dimension continues to in-
crease almost proportionally to AR, or the span with fixed
(see Fig. 2). Thus, similar to (see Fig. 6 and 8), (3) implies
that becomes virtually independent of AR in such a 2-D
sensor configuration.

VIII. CLOSED-FORM CORRELATIONS

We seek closed-form correlations to represent the func-
tional relationship , which can be further decom-
posed using (8). For the still-fluid power , (5)–(7) are
numerically solved using parameter combinations ( ,

, AR) with ,
,

and . The numerical results
are then fitted to the following equation:

(10)

This functional form and the specific parameter values above
are chosen based on the observation that is virtually linear in

and in sufficiently large . The coefficients in (10) depend
on AR and are found to be

This correlation agrees with numerical results within 1.5%
for , and . The
correlation is also valid for a larger range of (e.g., within 5%
of numerical results for over the same ranges of

and AR above).
Due to the insensitivity of the dimensionless net hotwire

power to the dimensionless hotwire conductivity (Sec-
tion VII), we use the typical value , and solve (5)–(7)
numerically with and AR drawn from the same value sets
as above. The following analytical expression is then fitted to
the numerical results:

(11)

The choice of this functional form is based on the observation
that the slope decreases with . Given that the de-
pendence of on both and AR becomes saturated at suffi-
ciently large parameter values, the coefficients in (11) are found
to be
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and

With these coefficients, (11) represents the numerical results
with an error smaller than 7.8% for ,
and .

The above-mentioned ranges of , , and AR, over which
(10) and (11) are obtained, encompass the experimental data dis-
cussed in Section IV, and are representative of MEMS shear-
stress sensors that feature the Fig. 1 configuration and are used
in air flow measurements (e.g., [10], [19], [20]). As such, these
closed-form and parametrized correlations, which are highly ef-
ficient while retaining the accuracy of a 3-D model, are useful
in practical iterative design processes to quantitatively evaluate
candidate sensor designs.

IX. CONCLUSION

We have developed a parametrized, 3-D model for MEMS
thermal shear-stress sensors that feature a hotwire deposited
on a vacuum-isolated diaphragm. The model considers coupled
heat transfer in the sensor and yields a functional relationship
between the dimensionless hotwire power and dimensional
shear-stress . This functional relationship is parametrized by
three dimensionless parameters: the dimensionless hotwire and
diaphragm thermal conductivities and , and the diaphragm
aspect ratio AR. Representing this relationship with closed-form
correlations, we have obtained a highly efficient model that re-
tains the accuracy of three-dimensional numerical simulations.
This model was validated by wind-tunnel testing results from
MEMS shear-stress sensors. It was then used to quantitatively
elucidate that MEMS thermal shear-stress sensors do not admit
a thin thermal boundary layer for experimentally relevant shear-
stress levels in air flow, and hence cannot be adequately de-
scribed by classical theory. The model was also used to system-
atically study the influence of the dimensionless parameters ,

and AR on MEMS sensor behavior. It was found that the
still-fluid hotwire power increases almost linearly with
and sufficiently large , and decreases with AR until reaching
an asymptotic value. On the other hand, the shear-induced net
hotwire power is insensitive to , while increasing with
both and AR until reaching saturation. In summary, the ef-
ficient and accurate model is useful in practical design pro-
cesses to evaluate the impact of geometry and material choices
on sensor performance.

Further work will address physical effects that are not cur-
rently included in the model for improved accuracy, especially
in the net hotwire power. For example, it would be interesting
to investigate sensor models in which the hotwire does not span
the entire width of the supporting diaphragm, and to include heat
transfer that occurs directly from the hotwire to the fluid. In ad-
dition, while it is estimated that the effects of natural convection
and radiation are not significant in the current investigation, a
more quantitative assessment of such effects is desirable. In par-
ticular, consideration of natural convection effects will allow the
model to be extended to represent MEMS shear-stress sensors
operating in water. These issues should be addressed in a way
such that the model complexity is still limited to a tractable level
to benefit practical design.

REFERENCES

[1] B. J. Bellhouse and D. L. Schultz, “Determination of mean and dynamic
skin friction, separation and transition in low-speed flow with a thin-film
heated element,” J. Fluid Mech., vol. 24, pp. 379–400, 1966.

[2] J. H. Haritonidis, “The measurements of wall shear stress,” in Advanced
Fluid Mechanics Measurements. New York: Springer-Verlag, 1989,
pp. 229–261.

[3] S. Goldstein, Fluid Mechanics Measurements, 2nd ed. New York:
Hemisphere, 1996.

[4] M. Kimura, S. Tung, J. Lew, C. M. Ho, F. Jiang, and Y. C. Tai, “Measure-
ments of wall shear stress of a turbulent boundary layer using a micro-
shear-stress imaging chip,” Fluid Dynam. Res., vol. 24, pp. 329–342,
1999.

[5] P. R. Bandyopadhyay, “Development of a microfabricated surface for
turbulence diagnostics and control,” in Applied Microfabrication to
Fluid Mechanics Chicago, IL, 1994, pp. 67–74.

[6] F. Jiang, “Silicon-Micromachined Flow Sensors,” Ph.D. dissertation,
California Inst. Technol., Pasadena, CA, 1998.

[7] M. A. Schmidt, R. T. Howe, S. D. Senturia, and J. H. Haritonidis, “De-
sign and calibration of a microfabricated floating-element shear-stress
sensor,” IEEE Trans. Electron. Devices, vol. 35, pp. 750–757, 1988.

[8] T. Pan, D. Hyman, M. Mehregany, E. Reshotko, and S. Garverick, “Mi-
crofabricated shear stress sensors, part 1: design and fabrication,” AIAA
J., vol. 37, pp. 66–72, 1999.

[9] C. Liu, Y.-C. Tai, J. B. Huang, and C.-M. Ho, “Surface micromachined
thermal shear stress sensor,” in Proc. ASME Int. Mech. Eng. Congress
and Expo., Chicago, IL, 1994, pp. 9–15.

[10] C. Liu, J. B. Huang, A. Zhu, F. Jiang, S. Tung, Y.-C. Tai, and C.-M. Ho,
“A micromachined flow shear stress sensor based on thermal transfer
principles,” J. Microelectromech. Syst., vol. 8, pp. 90–99, 1999.

[11] F. Jiang, Y.-C. Tai, J. B. Huang, and C.-M. Ho, “Polysilicon structures
for shear stress sensors,” in Proc. IEEE Region 10 Int. Conf. Microelec-
tronics and VLSI, Hong Kong, 1995, pp. 16–19.

[12] E. Kalvesten, “Pressure and Wall Shear Stress Sensors for Turbulence
Measurements,” Ph.D. dissertation, Royal Inst. Technol., Stockholm,
Sweden, 1996.

[13] L. Lofdahl and M. Gad-el-Hak, “MEMS-based pressure and shear stress
sensors for turbulent flows,” Meas. Sci. Tech., vol. 10, pp. 665–686,
1999.

[14] A. Cain, V. Chandrasekaran, T. Nishida, and M. Sheplak, “Development
of a wafer-bonded, silicon-nitride membrane thermal shear-stress sensor
with platinum sensing element,” in Tech. Digest, Solid-State Sensor and
Actuator Workshop, Hilton Head Island, SC, 2000, pp. 300–303.

[15] X. Q. Wang, Z. Han, F. Jiang, T. Tsao, Q. Lin, Y. C. Tai, V. Koosh, R.
Goodman, J. Lew, and C. M. Ho, “A fully integrated shear stress sensor,”
in Tech. Digest, Int. Conf. Solid-State Sensors and Actuators, Sendai,
Japan, 1999, pp. 1074–1077.

[16] J. B. Huang, S. Tung, C.-M. Ho, C. Liu, and Y.-C. Tai, “Improved micro
thermal shear-stress sensor,” IEEE Trans. Instrum. Meas., vol. 45, 1996.

[17] M. Sheplak, V. Chandrasekaran, A. Cain, T. Nishida, and L. N.
Cattafesta, “Characterization of a silicon-micromachined thermal
shear-stress sensor,” AIAA J., pp. 1099–1104, 2002.

[18] J. B. Huang, F. Jiang, Y.-C. Tai, and C.-M. Ho, “A micro-electro-me-
chanical-system-based thermal shear-stress sensor with self-frequency
compensation,” Meas. Sci. Tech., vol. 10, pp. 687–696, 1999.

Authorized licensed use limited to: Columbia University. Downloaded on October 12, 2009 at 16:18 from IEEE Xplore.  Restrictions apply. 



LIN et al.: A PARAMETRIZED THREE-DIMENSIONAL MODEL FOR MEMS THERMAL SHEAR-STRESS SENSORS 633

[19] F. Jiang, Y.-C. Tai, B. Gupta, R. Goodman, S. Tung, J. B. Huang, and
C.-M. Ho, “A micromachined shear stress sensor imager,” in Proc. Int.
Workshop Micro Electro Mechanical Systems, San Diego, CA, 1996, pp.
110–115.

[20] F. Jiang, Y.-C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C.-M. Ho, “A
flexible MEMS technology and its first application to shear stress
sensor skin,” in Proc. Int. Workshop Micro Electro Mechanical Systems,
Nagoya, Japan, 1997, pp. 465–470.

[21] Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, “IC-integrated flexible shear-
stress sensor skin,” J. Microelectromech. Syst., vol. 12, pp. 740–747,
2003.

[22] T. Tsao, F. Jiang, R. A. Miller, Y.-C. Tai, B. Gupta, R. Goodman, S. Tung,
and C.-M. Ho, “An integrated MEMS system for turbulent boundary
layer control,” in Tech. Digest, Int. Conf. Solid State Sensors and Actu-
ators, Chicago, IL, 1997, pp. 315–318.

[23] Y. Xu, F. Jiang, Q. Lin, J. Clendenen, S. Tung, and Y.-C. Tai, “Under-
water shear-stress sensor,” in Proc. IEEE Int. Conf. Micro Electro Me-
chanical Systems, Las Vegas, NV, 2002, pp. 340–343.

[24] A. Appukuttan, W. Shyy, M. Sheplak, and L. Cattafesta, “Mixed con-
vection induced by MEMS-based thermal shear stress sensors,” Numer.
Heat Transfer, Part A, vol. 43, pp. 283–305, 2003.

[25] D. Meunier, S. Tardu, D. Tsamados, and J. Boussey, “Realization and
simulation of wall shear stress integrated sensors,” Microelectron. J., vol.
34, pp. 1129–1136, 2003.

[26] Q. Lin, F. Jiang, X. Wang, Y. Xu, Z. Han, Y.-C. Tai, J. Lew, and C.-M.
Ho, “Experiments and simulations of MEMS thermal sensors for wall
shear stress measurements in aerodynamic control applications,” J. Mi-
cromech. Microeng., vol. 14, pp. 1640–1649, 2004.

[27] F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass
Transfer, 4th ed. New York: Wiley, 1996.

[28] X. Zhang and C. P. Grigoropoulos, “Thermal-conductivity and diffu-
sivity of freestanding silicon-nitride thin-films,” Rev. Scientific Instrum.,
vol. 66, pp. 1115–1120, 1995.

[29] O. Paul, M. von Arx, and H. Baltes, “Process-dependent thermophysical
properties of CMOS IC thin films,” in Tech. Digest, Int. Conf. Solid-State
Sensors and Actuators, and Eurosensors IX, Stockholm, Sweden, 1995,
pp. 178–181.

[30] A. D. McConnell, S. Uma, and K. E. Goodson, “Thermal conductivity
of doped polysilicon layers,” J. Microelectromech. Syst., vol. 10, pp.
360–369, 2001.

[31] C. H. Mastrangelo, Y. C. Tai, and R. S. Muller, “Thermophysical prop-
erties of low-residual stress, silicon-rich, Lpcvd silicon-nitride films,”
Sens. Actuators A, Phys., vol. 23, pp. 856–860, 1990.

Qiao Lin received the Ph.D. degree in mechan-
ical engineering from the California Institute of
Technology (Caltech), Pasadena, in 1998 with
dissertation research on kinematics and mechanics
of robotic manipulation.

He conducted postdoctoral research in micro-
electromechanical systems (MEMS) at the Caltech
Micromachining Laboratory from 1998 to 2000, and
has since been an Assistant Professor in the Depart-
ment of Mechanical Engineering at Carnegie Mellon
University, Pittsburgh, PA. His research interests are

in MEMS, including analysis, design and fabrication of micro/nano-fluidic,
thermal, and robotic devices for biological and chemical applications.

Yong Xu received the B.S. degree in electronics engi-
neering from Tsinghua University, Beijing, China, in
1997 and the M.S. and Ph.D. degrees in electrical en-
gineering from the California Institute of Technology
(Caltech), Pasadena, in 1998 and 2002, respectively.

He is currently an Assistant Professor in the
Department of Electrical and Computer Engineering
at Wayne State University. His research interests
include MEMS smart skins, intelligent textiles,
microfluidics, biomedical sensors, novel packaging
technology, and nanotechnology.

Fukang Jiang received the M.S. and Ph.D. degrees in
electrical engineering from the California Institute of
Technology in 1992 and 1997, respectively, where his
research was on the development of MEMS flow sen-
sors and their advanced packaging technologies such
as the flexible-skin-type substrate for MEMS devices.

Since 1997, he has been with Umachines, Inc., de-
veloping various optical MEMS products such as op-
tical switches and 3-D scanning mirror arrays.

Yu-Chong Tai (M’97) received the B.S. degree from
National Taiwan University and the M.S. and Ph.D.
degrees in electrical engineering from the University
of California at Berkeley.

After Berkeley, he joined the faculty of Electrical
Engineering at the California Institute of Technology
(Caltech), Pasadena, and built the Caltech MEMS
Lab. He is currently a full Professor of Electrical
Engineering and Bioengineering at Caltech. His
research interests include flexible MEMS, MEMS
for retinal implants, integrated Parylene nanofluidics,

neuroprobes/neurochips and lab-on-a-chip.
Dr. Tai has received several awards such as the IBM fellowship, the Best

Thesis Award, the Presidential Young Investigator (PYI) Award and the David
and Lucile Packard Fellowship. He Co-Chaired the 2002 IEEE MEMS Confer-
ence in Las Vegas. He is currently a Subject Editor of the IEEE/ASME JOURNAL

OF MICROELECTROMECHANICAL SYSTEMS.

Chih-Ming Ho (M’00) received the Ph.D. degree in
mechanics from the John Hopkins University, Balti-
more, MD, in 1974.

He currently holds the Ben Rich-Lockheed Martin
Professor in the Henry Samueli School of Engi-
neering and serves as the University of California
at Los Angeles Associate Vice-Chancellor for
Research. He is the Director of the Institute for Cell
Mimetic Space Exploration (CMISE). In 1997, he
was inducted as a member of the National Academy
of Engineering and in 1998, he was elected as an

Academician of Academia Sinica.
Dr. Ho is a Fellow of the American Physical Society as well as the American

Institute of Aeronautics and Astronautics for his contributions in a wide spec-
trum of technical areas.

Authorized licensed use limited to: Columbia University. Downloaded on October 12, 2009 at 16:18 from IEEE Xplore.  Restrictions apply. 


	toc
	A Parametrized Three-Dimensional Model for MEMS Thermal Shear-St
	Qiao Lin, Yong Xu, Fukang Jiang, Yu-Chong Tai, Member, IEEE, and
	I. I NTRODUCTION

	Fig.€1. (a) Schematic and (b) micrograph of a MEMS thermal shear
	Fig.€2. Illustration of the MEMS thermal shear-stress sensor mod
	II. S ENSOR C ONFIGURATION
	III. P ARAMETRIZED MEMS S ENSOR M ODEL
	IV. E XPERIMENTAL V ALIDATION

	Fig.€3. Comparison of model-predicted and experimentally determi
	V. T HERMAL B OUNDARY L AYER C HARACTERISTICS AND I NADEQUACY OF

	Fig. 4. Edge of the thermal boundary layer (on which $\theta_{f}
	Fig.€5. Second-order partial derivatives of the fluid temperatur
	Fig.€6. Dependence of the dimensionless still-fluid hotwire powe
	VI. S ENSOR R ESPONSE IN S TILL F LUID

	Fig.€7. Normalized temperature distributions along the hotwire a
	Fig.€8. Dependence of the dimensionless still-fluid hotwire powe
	VII. S ENSOR R ESPONSE TO S HEAR S TRESS

	Fig. 9. Dimensionless shear-induced hotwire power $\Delta{\rm p}
	Fig.€10. Boundary of the effective heated region on the diaphrag
	Fig. 11. Dimensionless shear-induced hotwire power $\Delta{\rm p
	Fig. 12. Dimensionless shear-induced hotwire power $\Delta{\rm p
	VIII. C LOSED -F ORM C ORRELATIONS
	IX. C ONCLUSION
	B. J. Bellhouse and D. L. Schultz, Determination of mean and dyn
	J. H. Haritonidis, The measurements of wall shear stress, in Adv
	S. Goldstein, Fluid Mechanics Measurements, 2nd ed. New York: He
	M. Kimura, S. Tung, J. Lew, C. M. Ho, F. Jiang, and Y. C. Tai, M
	P. R. Bandyopadhyay, Development of a microfabricated surface fo
	F. Jiang, Silicon-Micromachined Flow Sensors, Ph.D. dissertation
	M. A. Schmidt, R. T. Howe, S. D. Senturia, and J. H. Haritonidis
	T. Pan, D. Hyman, M. Mehregany, E. Reshotko, and S. Garverick, M
	C. Liu, Y.-C. Tai, J. B. Huang, and C.-M. Ho, Surface micromachi
	C. Liu, J. B. Huang, A. Zhu, F. Jiang, S. Tung, Y.-C. Tai, and C
	F. Jiang, Y.-C. Tai, J. B. Huang, and C.-M. Ho, Polysilicon stru
	E. Kalvesten, Pressure and Wall Shear Stress Sensors for Turbule
	L. Lofdahl and M. Gad-el-Hak, MEMS-based pressure and shear stre
	A. Cain, V. Chandrasekaran, T. Nishida, and M. Sheplak, Developm
	X. Q. Wang, Z. Han, F. Jiang, T. Tsao, Q. Lin, Y. C. Tai, V. Koo
	J. B. Huang, S. Tung, C.-M. Ho, C. Liu, and Y.-C. Tai, Improved 
	M. Sheplak, V. Chandrasekaran, A. Cain, T. Nishida, and L. N. Ca
	J. B. Huang, F. Jiang, Y.-C. Tai, and C.-M. Ho, A micro-electro-
	F. Jiang, Y.-C. Tai, B. Gupta, R. Goodman, S. Tung, J. B. Huang,
	F. Jiang, Y.-C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C.-M. Ho,
	Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, IC-integrated flexible
	T. Tsao, F. Jiang, R. A. Miller, Y.-C. Tai, B. Gupta, R. Goodman
	Y. Xu, F. Jiang, Q. Lin, J. Clendenen, S. Tung, and Y.-C. Tai, U
	A. Appukuttan, W. Shyy, M. Sheplak, and L. Cattafesta, Mixed con
	D. Meunier, S. Tardu, D. Tsamados, and J. Boussey, Realization a
	Q. Lin, F. Jiang, X. Wang, Y. Xu, Z. Han, Y.-C. Tai, J. Lew, and
	F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass 
	X. Zhang and C. P. Grigoropoulos, Thermal-conductivity and diffu
	O. Paul, M. von Arx, and H. Baltes, Process-dependent thermophys
	A. D. McConnell, S. Uma, and K. E. Goodson, Thermal conductivity
	C. H. Mastrangelo, Y. C. Tai, and R. S. Muller, Thermophysical p



